Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are essential molecular imaging tools for the in vivo investigation of neurotransmission. Traditionally, PET and SPECT images are analysed in a univariate manner, testing for changes in radiotracer binding in regions or voxels of interest independently of each other. Over the past decade, there has been an increasing interest in the so-calledapproach that captures relationships of molecular imaging measures in different brain regions. Targeting these inter-regional interactions within a neuroreceptor system may allow to better understand complex brain functions. In this article, we provide a comprehensive review of molecular connectivity studies in the field of neurotransmission. We examine the expanding use of molecular connectivity approaches, highlighting their applications, advantages over traditional methods, and contributions to advancing neuroscientific knowledge. A systematic search in three bibliographic databases MEDLINE, EMBASE, and Scopus on July 14, 2023 was conducted. A second search was rerun on April 4, 2024. Molecular imaging studies examining functional interactions across brain regions were included based on predefined inclusion and exclusion criteria. Thirty-nine studies were included in the scoping review. Studies were categorised based on the primary neurotransmitter system being targeted: dopamine, serotonin, opioid, muscarinic, glutamate, and synaptic density. The most investigated system was the dopaminergic and the most investigated disease was Parkinson's disease (PD). This review highlighted the diverse applications and methodologies in molecular connectivity research, particularly for neurodegenerative diseases and psychiatric disorders. Molecular connectivity research offers significant advantages over traditional methods, providing deeper insights into brain function and disease mechanisms. As the field continues to evolve, embracing these advanced methodologies will be essential to understand the complexities of the human brain and improve the robustness and applicability of research findings in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319898PMC
http://dx.doi.org/10.1162/imag_a_00530DOI Listing

Publication Analysis

Top Keywords

molecular connectivity
20
molecular imaging
12
molecular
8
connectivity studies
8
scoping review
8
brain regions
8
advantages traditional
8
traditional methods
8
studies
5
brain
5

Similar Publications

The timely release of chemical messengers is a crucial step in cell-to-cell communication. Does this release occur as a passive diffusion from the donor membrane or it is actively regulated? A series of studies indicated that chemical messengers' secretion is "sub-quantal". This mode of secretion demands a strongly regulated release mechanism and calls for a thorough characterization of the release sites.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

The immune system is the ultimate defense against diseases and its dysregulated homeostasis greatly threatens human health. Natural polysaccharides have a variety of biological activities and show promising applications in immunomodulation. In this study, we characterized the structure of the polysaccharide IRPS-TE-3 from Isatidis Radix using morphological analysis, molecular weight analysis, monosaccharide composition analysis, methylation analysis and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Protein-nucleic acid interactions (PNI) play crucial roles in various life processes, including gene expression regulation, DNA replication, repair, recombination, and RNA processing and translation. However, accurately predicting these interactions remains challenging due to their complexity. This paper proposes a deep learning-based multi-task learning framework for predicting protein-nucleic acid interactions.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) affects a large proportion of the global population and is widely regarded as the fastest growing cause of hepatocellular carcinoma. Currently, approved therapeutic strategies for MASH are limited. Therefore, this study used the Connectivity Map (CMap) database to identify a candidate compound for MASH, evaluate its efficacy in experimental models, and explore its mechanism of action.

View Article and Find Full Text PDF