98%
921
2 minutes
20
Synchronized 40-Hz gamma oscillations in specific sensory and higher-order thalamocortical networks provide a neural mechanism for feature binding. Aging-related changes in gamma oscillations may cause deficits in auditory feature binding, contributing to impaired speech-in-noise perception. Gamma synchrony is controlled through inhibitory mechanisms mediated by the neurotransmitter γ-aminobutyric acid (GABA), which has been shown to decline in aging. This study investigated aging-related changes in gamma oscillations and how they relate to auditory function and cortical GABA levels. Magnetoencephalograms of 40-Hz auditory steady-state responses (ASSRs) were recorded in young and older adults by presenting amplitude-modulated tones in quiet and mixed with concurrent multi-talker babble noise. Responses in the quiet condition had longer latencies and more prominent amplitudes, indicating the 40-Hz ASSRs in noise were dominated by a sensory component and in quiet by a component involved in higher-order processing. The ASSR amplitudes increased in older adults under both stimulus conditions. However, larger ASSR amplitudes were associated with more severe hearing and speech-in-noise loss only in the noise condition. This suggests the aging-related increase in synchrony of sensory gamma oscillations has a detrimental effect on auditory processing. It may cause increased interference between competing sounds in the central auditory system, making it difficult for the aging auditory system to separate speech features from noise and bind them into a distinct perceptual object. Also in older adults, larger amplitudes of the 40-Hz ASSRs in the quiet condition were associated with higher left auditory cortex GABA concentrations measured with magnetic resonance spectroscopy, supporting GABA's role in internally generated gamma synchrony in aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007526 | PMC |
http://dx.doi.org/10.1162/imag_a_00035 | DOI Listing |
Ann N Y Acad Sci
September 2025
University of Toronto, Toronto, Ontario, Canada.
Neural oscillations in beta (13-30 Hz) and gamma (>30 Hz) frequency bands index a variety of sensorimotor and cognitive processes. To compare two rehabilitation regimens for chronic stroke patients with a hemiparetic hand, we randomly assigned them to either music-supported therapy or physiotherapy for 10 weeks. Previously, we reported the music group's improved motor speed, mood, well-being, and rhythm perception.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Repetition suppression, the reduced neural response upon repeated presentation of a stimulus, can be explained by models focussing on bottom-up (i.e. adaptation) or top-down (i.
View Article and Find Full Text PDFAlpha Psychiatry
August 2025
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875 Beijing, China.
Background: Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder marked by impaired interactions and restricted interests, the pathophysiology of which is not fully understood. The current study explored the potential therapeutic effects of transcranial direct current stimulation (tDCS) on the neurophysiological aspects of ASD, specifically focusing on the brain's excitatory/inhibitory (E/I) balance and behavioral outcomes, providing scientific guidance for ASD intervention.
Methods: Forty-two children with ASD were randomly divided into either an active tDCS or sham tDCS group.
J Neurosci
September 2025
Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
CIBA Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, 76010 Querétaro, México.
Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.
View Article and Find Full Text PDF