Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper proposes a method for incoherent beam combining on extended areas (or extended targets) based on a gradient light intensity trap, which is effectively created through intensity weighted modulation, and with the help of a proper optimization algorithm, light spots will be guided into this trap to achieve beam combination. A physical model of this method is established, which determines the optimal surface profile of the gradient light intensity trap, thereby aiding in achieving ideal results for multi-channel beams in both modulation and non-modulation. Subsequently, the feasibility of the method is verified in the laboratory, where tip/tilt aberrations are corrected by adaptive fiber-optics collimators during the beam-combining process. This study provides what we believe to be a new approach to the problems of beam pointing and combining on an extended area (or extended target).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.544672DOI Listing

Publication Analysis

Top Keywords

gradient light
12
light intensity
12
intensity trap
12
incoherent beam
8
beam combining
8
extended areas
8
based gradient
8
optimization algorithm
8
combining extended
8
extended
5

Similar Publications

Epiphytic orchids have evolved specialized adaptive strategies, such as aerial roots with water-absorbing velamen tissues, to cope with water-scarce and nutrient-deficient habitats. Our previous study revealed that the aerial roots of the epiphytic orchid Phalaenopsis aphrodite lack a gravitropic response, raising the possibility that alternative tropic mechanisms may contribute to their adaptation. In this study, we examined the effects of light and moisture on aerial root growth in P.

View Article and Find Full Text PDF

Although the surface micro-ornamentation of the scales within the skin of snakes has been the subject of many previous studies, there has been little work done on the spectacle, a protective (keratinised) goggle separated from the underlying cornea by a sub-spectacular space. The surface ultrastructure of the "Oberhäutchen" of the spectacle is examined in nine species of snakes (five aquatic and four terrestrial) using light and electron microscopy, micro-computed tomography and gel-based profilometry. Significant topographic differences in cell size (increases of between 5.

View Article and Find Full Text PDF

Background: Antiphospholipid syndrome (APS) is a major immune-related disorder that leads to adverse pregnancy outcomes (APO), including recurrent miscarriage, placental abruption, preterm birth, and fetal growth restriction. Antiphospholipid antibodies (aPLs), particularly anticardiolipin antibodies (aCL), anti-β2-glycoprotein I antibodies (aβ2GP1), and lupus anticoagulant (LA), are considered key biomarkers for APS and are closely associated with adverse pregnancy outcomes. This is a prospective observational cohort study to use machine learning model to predict adverse pregnancy outcomes in APS patients using early pregnancy aPL levels and clinical features.

View Article and Find Full Text PDF

Habitat and land-use intensity shape moth community structure across temperate forest and grassland.

J Anim Ecol

September 2025

Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences, Technische Universität München, Freising, Germany.

Land-use change and intensification are major drivers of biodiversity loss, yet their effects on diversity have usually been studied within a single habitat type or land-use category, limiting our understanding of cross-habitat patterns. Moths, a species-rich taxon worldwide, represent a significant portion of the biodiversity in both temperate forests and grasslands, functioning as pollinators and herbivores. While increasing land-use intensity (LUI) in both habitats is expected to negatively impact moth assemblages, the strength of this effect remains uncertain.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF