98%
921
2 minutes
20
Reassortment among influenza A viruses (IAV) facilitates evolution and has been associated with interspecies transmission and pandemics. We introduce a novel tool called TreeSort that accurately identifies recent and ancestral reassortment events on datasets with thousands of IAV whole genomes. TreeSort uses the phylogeny of a selected IAV segment as a reference and finds the branches on the phylogeny where reassortment has occurred with high probability. The tool reports the particular gene segments that were involved in reassortment and how different they are from prior gene pairings. Using TreeSort, we studied reassortment patterns of different IAV subtypes isolated in avian, swine, and human hosts. Avian IAV demonstrated more reassortment than human and swine IAV, with the avian H7 subtype displaying the most frequent reassortment. Reassortment in the swine and human H3 subtypes was more frequent than in the swine and human H1 subtypes, respectively. The highly pathogenic avian influenza H5N1 clade 2.3.4.4b had elevated reassortment rates in the 2020 to 2023 period; however, the surface protein-encoding genes (HA, NA, and MP) co-evolved together with almost no reassortment among these genes. We observed similar co-evolutionary patterns with very low rates of reassortment among the surface proteins for the human H1 and H3 lineages, suggesting that strong co-evolution and preferential pairings among surface proteins are a consequence of high viral fitness. Our algorithm enables real-time tracking of IAV reassortment within and across different hosts and can identify novel viruses for pandemic risk assessment. TreeSort is available at https://github.com/flu-crew/TreeSort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342482 | PMC |
http://dx.doi.org/10.1093/molbev/msaf133 | DOI Listing |
Avian Pathol
September 2025
Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro (PD), Italy.
Infectious bursal disease virus (IBDV) is a highly contagious, economically relevant immunosuppressive pathogen of chickens. Despite belonging to a single serotype, virulent IBDVs display a remarkable heterogeneity in genetic and functional features. Traditionally, strains are categorized into classical, variant and very virulent viruses, but many atypical IBDVs have been recently identified.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Arthropod-borne viruses (arboviruses) pose a major threat to global public health, impacting both human and animal health. Genomic characterization is important for arboviruses because it allows for an understanding of their evolution and improves timely outbreak and epidemic response. In this study, we used high-throughput sequencing and computational analyses to characterize the genomes and evolution of 46 previously unsequenced or partially sequenced arbovirus isolates collected across 23 countries between 1954 and 1984.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Swine influenza A virus (swIAV) is an important zoonotic pathogen with the potential to cause human influenza pandemics. Swine are considered "mixing vessels" for generating novel reassortant influenza A viruses. In 2009, a swine-origin reassortant virus (2009 pandemic H1N1, pdm/09 H1N1) spilled over to humans, causing a global influenza pandemic.
View Article and Find Full Text PDFJ Virol Methods
September 2025
Department of Virology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy. Electronic address:
Since its emergence in 1996, highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 lineage have diversified into multiple clades, culminating in the 2020-2021 global panzootic caused by H5N1 viruses of the clade 2.3.4.
View Article and Find Full Text PDFVet Microbiol
October 2025
School of Medicine, Shaoxing University, Shaoxing 312000, China; School of Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China. Electronic address:
The H9N2 avian influenza virus (AIV) represents a considerable threat to both poultry industries and public health, not only due to its widespread prevalence but also because of its potential to facilitate the emergence of more virulent influenza strains through genetic reassortment. Recent studies have highlighted the pivotal role of hypoxia-inducible factor 1-alpha (HIF-1α) in viral pathogenesis, immune modulation, and the regulation of inflammatory responses, positioning it as a promising target for antiviral strategies. In this study, we identified that HIF-1α actively contributes to the inflammatory response triggered by H9N2 AIV infection in MH-S cells.
View Article and Find Full Text PDF