Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-performance resonant metasurfaces are promising for various applications, such as filtering and optical sensing. In this paper, a metasurface array composed of a periodically arranged nanodisk array and a Fabry-Perot (F-P) resonant cavity exhibits multiple ultra-narrow reflection resonance peaks in the near-infrared wavelength band, with a minimum bandwidth of 10 nm and the lowest reflectance of 0.08%. The number of resonant channels can also be further increased by breaking the symmetric structure. At the same time, this structure has characteristics such as polarization insensitivity. In addition, the metasurface array exhibits high sensitivity to the refractive index of the media layer, with a refractive index sensing sensitivity of over 900 nm/RIU. These advantages give the metasurface array great potential for sensing, detection, filtering, and other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.561528DOI Listing

Publication Analysis

Top Keywords

metasurface array
12
multi-channel narrow
4
narrow bandstop
4
bandstop filter
4
filter refractive
4
refractive sensor
4
sensor based
4
based nanodisk
4
nanodisk arrays
4
arrays fabry-perot
4

Similar Publications

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Active manipulation of terahertz (THz) waves is important for future optoelectronic applications, but most approaches rely on volatile or slow actuation, limiting efficiency and stability. Here, we report a nonvolatile, low-voltage tunable THz transmission device based on electrochemical modulation of a conductive polymer thin film integrated with metallic nanoresonators. A thin film of PEDOT:PSS, deposited via a single-step spin-coating process onto the nanoresonator array, enables efficient modulation of resonance-enhanced THz transmission with a gate voltage of less than 1 V.

View Article and Find Full Text PDF

The terahertz (THz) frequency band has abundant spectrum resources, which is suitable for constructing communication systems with ultra-high data rates and extremely low latency. Multiple input multiple output (MIMO) devices are crucial for realizing THz communication, and the synchronous transmission and noncorrelation of different channels are the keys to MIMO technology. This paper proposes a graphene-based polarization spatial diversity and multiplexing MIMO surface (PDM-MIMOS) with 2 × 2 metasurface arrays.

View Article and Find Full Text PDF

Trans-scale hierarchical metasurfaces for multispectral compatible regulation of lasers, infrared light, and microwaves.

Nanophotonics

August 2025

National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.

Electromagnetic scattering control of optical windows has significant challenges in improving optical transmission and compatibility, especially for multispectral and large-angle incidences, due to material and structure mismatches. This paper presents trans-scale hierarchical metasurfaces (THM) to achieve wide-angle optical transmission enhancement and electromagnetic scattering-compatible regulation in dual-band lasers, and infrared and microwave ranges. THM comprises an ultrafine hollow metal array (UHMA) and a transmission-enhanced micro-nanocone array (TMCA).

View Article and Find Full Text PDF

Photonic terahertz phased array via selective excitation of nonlinear Pancharatnam-Berry elements.

Nat Commun

September 2025

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.

Phased arrays are crucial in various technologies, such as radar and wireless communications, due to their ability to precisely control and steer electromagnetic waves. This precise control improves signal processing and enhances imaging performance. However, extending phased arrays to the terahertz (THz) frequency range has proven challenging, especially for high-frequency operation, broadband performance, two-dimensional (2D) phase control with large antenna arrays, and flexible phase modulation.

View Article and Find Full Text PDF