98%
921
2 minutes
20
Materials with excellent nonlinear optical properties are critical for advancing optoelectronic technologies, particularly in energy storage and ultrafast photonic devices. High-entropy perovskite oxides (HEPOs) have emerged as promising candidates due to their chemical stability and configurational complexity. In this work, HEPO thin films, ()(), were fabricated using the pulsed-laser deposition technique. The effects of configurational entropy-driven lattice distortion and multication synergy at both A- and B-sites on the third-order nonlinear optical response were systematically investigated. The optical transmission spectra in the visible-near infrared region were measured to demonstrate that the transparency of the films gradually increases with the increasing B-site Sn doping concentration. Z-scan measurements revealed that the optimized sample with =0.5 exhibited a large third-order nonlinear susceptibility (=1.36×10), accompanied by a record figure of merit (/=1.37×10⋅). These results highlight the superior nonlinear optical performance of HEPOs, providing a foundation for practical applications in optical switches, optical limiters, and other optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.564430 | DOI Listing |
Nano Lett
September 2025
Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.
The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.
View Article and Find Full Text PDFAdv Mater
September 2025
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.
The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.
View Article and Find Full Text PDFNat Nanotechnol
September 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.
View Article and Find Full Text PDFNat Commun
September 2025
Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059, Rostock, Germany.
The concept of parity-time symmetry has firmly established non-Hermiticity as a versatile degree of freedom on a variety of physical platforms. In general, the non-Hermitian dynamics of open systems are perceived to be inextricably linked to complex-valued potentials facilitating the local attenuation and coherent amplification in wave mechanics. Along these lines, time reversal symmetry is associated with a complex conjugation of the potential landscape, in essence swapping gain and loss.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:
Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.
View Article and Find Full Text PDF