This paper demonstrates what we believe to be a new WMS m-FID technique based on cepstral analysis, incorporating wavelength modulation spectroscopy (WMS) with a modified form of the time-domain molecular free-induction decay (m-FID) signal. Detailed theoretical framework of the WMS m-FID technique, as well as the fitting routine, has been investigated. The proposed WMS m-FID technique is first validated through a static CO gas cell experiment using the CO (9) absorption line near 2179.
View Article and Find Full Text PDFMaterials with excellent nonlinear optical properties are critical for advancing optoelectronic technologies, particularly in energy storage and ultrafast photonic devices. High-entropy perovskite oxides (HEPOs) have emerged as promising candidates due to their chemical stability and configurational complexity. In this work, HEPO thin films, ()(), were fabricated using the pulsed-laser deposition technique.
View Article and Find Full Text PDFThe sol-gel synthesis represents a versatile platform to fabricate ceramic inorganic membranes. However, it is still a grand challenge to push the boundary of sol-gel chemistry towards high-quality organic membrane construction. Herein, a facile and controlled nanocrystal suturing strategy in sol-gel solutions is developed to afford highly crystalline and free-standing covalent organic framework membranes.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
In this study, we synthesized perovskite BaSrSnO ceramics with a unique thorn-like microstructure using the solid-state reaction method. The structural and complex dielectric properties were investigated in detail. X-ray diffraction was employed to characterize the phase purity, while X-ray photoelectron spectroscopy was used to analyze the chemical state of the components.
View Article and Find Full Text PDFOpt Express
November 2024
Multimed Tools Appl
May 2023
Multimedia data plays an important role in medicine and healthcare since EHR (Electronic Health Records) entail complex images and videos for analyzing patient data. In this article, we hypothesize that transfer learning with computer vision can be adequately harnessed on such data, more specifically chest X-rays, to learn from a few images for assisting accurate, efficient recognition of COVID. While researchers have analyzed medical data (including COVID data) using computer vision models, the main contributions of our study entail the following.
View Article and Find Full Text PDFNanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
In situ and micro-scale visualization of electrochemical reactions and multiphase transports on the interface of porous transport electrode (PTE) materials and solid polymer electrolyte (SPE) has been one of the greatest challenges for electrochemical energy conversion devices, such as proton exchange membrane electrolyzer cells (PEMECs), CO reduction electrolyzers, PEM fuel cells, etc. Here, an interface-visible characterization cell (IV-CC) is developed to in situ visualize micro-scaled and rapid electrochemical reactions and transports in PTE/SPE interfaces. Taking the PEMEC of a green hydrogen generator as a study case, the unanticipated local gas blockage, micro water droplets, and their evolution processes are successfully visualized on PTE/PEM interfaces in a practical PEMEC device, indicating the existence of unconventional reactant supply pathways in PEMs.
View Article and Find Full Text PDFElectrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (NRR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture a rapid and facile method.
View Article and Find Full Text PDFSensors (Basel)
June 2022
Most robots are programmed to carry out specific tasks routinely with minor variations. However, more and more applications from SMEs require robots work alongside their counterpart human workers. To smooth the collaboration task flow and improve the collaboration efficiency, a better way is to formulate the robot to surmise what kind of assistance a human coworker needs and naturally take the right action at the right time.
View Article and Find Full Text PDFThis paper demonstrates a new method for solving nonlinear tomographic problems, combining calibration-free wavelength modulation spectroscopy (CF-WMS) with a dual-branch deep learning network (Y-Net). The principle of CF-WMS, as well as the architecture, training and performance of Y-Net have been investigated. 20000 samples are randomly generated, with each temperature or HO concentration phantom featuring three randomly positioned Gaussian distributions.
View Article and Find Full Text PDFAn anode electrode concept of thin catalyst-coated liquid/gas diffusion layers (CCLGDLs), by integrating Ir catalysts with Ti thin tunable LGDLs with facile electroplating in proton exchange membrane electrolyzer cells (PEMECs), is proposed. The CCLGDL design with only 0.08 mg cm can achieve comparative cell performances to the conventional commercial electrode design, saving ≈97% Ir catalyst and augmenting a catalyst utilization to ≈24 times.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
For a proton exchange membrane electrolyzer cell (PEMEC), conditioning is an essential process to enhance its performance, reproducibility, and economic efficiency. To get more insights into conditioning, a PEMEC with Ir-coated gas diffusion electrode (IrGDE) was investigated by electrochemistry and visualization characterization techniques. The changes of polarization curves, electrochemical impedance spectra (EIS), and bubble dynamics before and after conditioning are analyzed.
View Article and Find Full Text PDFBMC Bioinformatics
January 2022
Background: Fluorescence image analysis in biochemical science often involves the complex tasks of identifying samples for analysis and calculating the desired information from the intensity traces. Analyzing giant unilamellar vesicles (GUVs) is one of these tasks. Researchers need to identify many vesicles to statistically analyze the degree of molecular interaction or state of molecular organization on the membranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Anion-exchange membrane electrolyzer cells (AEMECs) are one of the most promising technologies for carbon-neutral hydrogen production. Over the past few years, the performance and durability of AEMECs have substantially improved. Herein, we report an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies that enables the high performance of AEMECs.
View Article and Find Full Text PDFAppl Opt
September 2021
Transparent titanium dioxide () films were deposited on quartz substrates by using a pulsed-laser deposition technique. The effects of deposition temperatures on the crystalline phases and optical properties of the films were investigated. Phase-pure anatase and rutile films were obtained at temperatures of 600°C and 800°C, respectively.
View Article and Find Full Text PDFTunable diode laser absorption spectroscopy (TDLAS) has been proved to be a powerful diagnostic tool in combustion research. However, current methods for post-processing a large number of blended spectral lines are often inadequate both in terms of processing speed and accuracy. The present study verifies the application of Gaussian process regression (GPR) on processing direct absorption spectroscopy data in combustion environments to infer gas properties directly from the absorbance spectra.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Exploring cost-effective and efficient bifunctional electrocatalysts via simple fabrication strategies is strongly desired for practical water splitting. Herein, an easy and fast one-step electrodeposition process is developed to fabricate W-doped NiFe (NiFeW)-layered double hydroxides with ultrathin nanosheet features at room temperature and ambient pressure as bifunctional catalysts for water splitting. Notably, the NiFeW nanosheets require overpotentials of only 239 and 115 mV for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, to reach a current density of 10 mA/cm in alkaline media.
View Article and Find Full Text PDFOff-pump coronary artery bypass grafting (OPCABG) is an effective strategy for revascularization. Preoperative anesthesia appears critical due to surgical instability and the risk of organ damage. This study, based on a functional module network, analysed the effects of preoperative inhalation anesthesia and intravenous anesthesia on OPCABG and performed a pivot analysis of its potential drug regulators.
View Article and Find Full Text PDFNanoparticles composite thin films formed by nanometer-sized gold and nickel particles embedded in SrTiO matrices were fabricated on MgO single-crystal substrates by co-depositing the metal and ceramic targets using the pulsed laser deposition technique. The linear optical absorption properties were measured from 350 to 800 nm, and the absorption peak due to the surface plasmon resonance of Au metal particles was observed around 557 nm. The ultra-fast third-order nonlinear optical properties of the films were determined by a single-beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps.
View Article and Find Full Text PDFComposite thin films Au:BaTiO3, comprising nanometer-sized gold particles embedded in barium titanate matrices, were synthesized on MgO (100) substrates with the pulsed laser deposition technique. The nanostructure of the films and the size distributions of the Au particles were analyzed by high-resolution transmission electron microscopy. Crystal lattice fringes from the Au nanocrystals and the BaTiO3 matrices were observed.
View Article and Find Full Text PDF