98%
921
2 minutes
20
Anion-exchange membrane electrolyzer cells (AEMECs) are one of the most promising technologies for carbon-neutral hydrogen production. Over the past few years, the performance and durability of AEMECs have substantially improved. Herein, we report an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies that enables the high performance of AEMECs. The comparison with a commercial titanium foam in the electrolyzer indicated that the engineered LGDL with thin-flat and straight-pore structures significantly improved the interfacial contacts, mass transport, and activation of more reaction sites, leading to outstanding performance. We obtained a current density of 2.0 A/cm at 1.80 V with an efficiency of up to 81.9% at 60 °C under 0.1 M NaOH-fed conditions. The as-achieved high performance in this study provides insight to design advanced LGDLs for the production of low-cost and high-efficiency AEMECs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c14693 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, National Center for International Research on Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
Seawater electrolysis offers a sustainable pathway for green hydrogen production, but chloride-induced side reactions, particularly chlorine evolution (ClER), limit the stability and efficiency of catalysts. Based on an interface-engineering strategy, a bifunctional CoP-MXene electrocatalyst was designed and fabricated, in which electrons are transferred from the Ti sites of the MXene support to the adjacent Co active centers of CoP. This directional electron donation modulates the Co electronic structure, generating electron-rich Co sites that effectively suppress Cl adsorption via electronic repulsion while preserving the OH reaction pathways through favorable proton-electron coupling.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
L. (MA) is a member of the Moraceae family, known as "white mulberry". Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
The sustainable and widespread developments of fuel cells require material innovation toward the sluggish oxygen reduction reaction (ORR). Although iron and nitrogen co-doped carbon material (Fe-N-C) is a promising alternative to scarce and expensive platinum-based electrocatalysts, the linear scaling relationships among the intermediates' adsorption energy limit maximum performance. Herein, we propose a coordination-adaptive catalyst design to bypass the intrinsic scaling relations through incorporating quasi-covalent Fe─F bond.
View Article and Find Full Text PDFEnergy Fuels
August 2025
Group of Energy Materials, École polytechnique fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion, Valais 1951, Switzerland.
Anion exchange membrane water electrolyzers (AEMWEs) offer a promising alternative to proton exchange membrane (PEM) electrolyzers, leveraging non-precious-metal catalysts and alkaline electrolytes for cost reduction. However, challenges persist in achieving long-term durability, high current densities, and stable membrane performance. While previous studies have examined AEM development, a comprehensive structural-electrochemical analysis of AEMWE components under prolonged operation remains limited.
View Article and Find Full Text PDFResearch (Wash D C)
August 2025
Materials Science, Energy and Nanoengineering (MSN) Department, University Mohammed VI Polytechnic, Ben Guerir, Morocco.
Water electrolysis is a key industrial process for producing green hydrogen. To avoid the use of noble metals and fluorinated polymer membranes, liquid water electrolysis is often carried out in alkaline conditions. It is common to distinguish between 3 processes: alkaline electrolysis at high electrolyte concentrations (≥7 M) with porous membranes, alkaline electrolysis at high electrolyte concentrations (≥7 M) with ion-solvating membranes, and alkaline electrolysis at moderate electrolyte concentrations (<2 M) with anion-exchange membranes.
View Article and Find Full Text PDF