Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid-phase exfoliation via shear flow is a widely adopted technique for the large-scale production of graphene. However, the underlying nano- and microscale exfoliation mechanisms remain poorly understood. In this work, we address this issue by performing hybrid nonequilibrium hydrodynamic simulations of coarse-grained defect-free graphite nanoplatelets immersed in a mesoscopic water fluid via the lattice Boltzmann method. This approach enables us to investigate graphene exfoliation up to 100 nm in length. Nonequilibrium effects, such as tumbling, alignment, and bending, are demonstrated. In particular, we reveal that due to the graphene-fluid hydrodynamic coupling, the graphite dynamics distorts the surrounding shear flow and reduces the local shear stress, thereby leading to an increase in the critical shear rate by a factor of 2 ∼ 4. This statement is fully supported by a theoretical analysis using a force-based criterion, i.e., overcoming the maximum interlayer van der Waals attraction, and hierarchical simulations: athermal and no coupling; athermal and hydrodynamic coupling; and thermal and hydrodynamic coupling. Our work unravels the paramount relevance of hydrodynamic coupling on graphene exfoliation and paves the way toward achieving large-scale nonequilibrium graphene simulations reminiscent of experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5c02005DOI Listing

Publication Analysis

Top Keywords

hydrodynamic coupling
20
graphene-fluid hydrodynamic
8
shear flow
8
graphene exfoliation
8
hydrodynamic
6
coupling
6
exfoliation
5
unraveling relevance
4
relevance graphene-fluid
4
coupling exfoliation
4

Similar Publications

Pneumatic booms offer distinct advantages over traditional structural barriers: not affecting the local vessel navigation and hydrological environment, enhanced mobility and maneuverability, etc. However, their oil interception performance remains insufficiently understood especially for the area-source ones. This study employs a well-validated numerical model based on the coupled VOF and DPM framework, to systematically investigate the plume evolution and oil containment efficiency of near-surface area-source bubble curtains under various aquatic scenarios.

View Article and Find Full Text PDF

While mercury (Hg) concentration and isotope analyses play pivotal roles in understanding contamination levels and Hg sources, complex hydrodynamics often obscure Hg transport pathways from source to sink. We applied hydrodynamic modeling with Hg stable isotopes to unravel source-specific contamination processes and propose effective management strategies in an estuarine system (Yeongil Bay) impacted by Hg-contaminated riverine input (Hyeongsan River) in Korea. Sediment isotope data revealed contributions of three sources: legacy Hg from the river, regional background Hg, and atmospheric Hg sources.

View Article and Find Full Text PDF

Surface modification of poly(ε-caprolactone) (PCL) to facilitate interactions with high pI proteins is a strategy used to enhance 3D PCL scaffolds for tissue engineering applications. The approach of the current study was to firstly optimise the surface modification on 2D films and then apply to 3D scaffolds. Melt-pressed PCL films were grafted with 2-aminoethyl methacrylate gamma radiation induced grafting to introduce amine functional groups to the substrate surfaces.

View Article and Find Full Text PDF

Flying vertebrates use specialized wingbeat kinematics in hovering, takeoff, and landing, featuring ventrally anterior downstrokes and aerodynamically inactive upstrokes to enhance aerodynamic characteristics at low airspeeds. Rarely implemented in robotics, this inspired RoboFalcon2.0, a flapping-wing robot with reconfigurable mechanisms performing bioinspired flap-sweep-fold (FSF) motion for controlled bird-style takeoff.

View Article and Find Full Text PDF

Magnetic microrobots capable of navigating complex fluid environments typically rely on real-time feedback to adjust external fields for propulsion and guidance. As an alternative, we explore the use of field-programmable rheotaxis, in which time-periodic magnetic fields drive directional migration of ferromagnetic particles in simple shear flows. Using a deterministic model that couples magnetic torques to hydrodynamic interactions near a surface, we show that the frequency, magnitude, and waveform of the applied field can encode diverse rheotactic behaviors-including downstream, upstream, and cross-stream migration relative to the flow.

View Article and Find Full Text PDF