98%
921
2 minutes
20
Background: In plants, comparative analyses of organellar genomes are often based on draft assemblies. Large-scale investigations into the complex structural rearrangements of mitochondrial genomes remain scarce.
Results: Here, we perform a comprehensive analysis of the dominant conformations and dynamic heteroplasmic variants of organellar genomes in the model plant Arabidopsis thaliana, utilizing high-quality long-read assemblies validated at high resolution from 149 samples. We find that mitochondrial and plastid genomes share common types of structural and small-scale variants driven by similar DNA sequence features. However, rearrangements mediated by repetitive sequences in mitochondrial genomes evolve so rapidly that they are often decoupled from other types of variants. Rare complex events involving elongation and fusion of existing repeats are also observed, contributing to the unalignable regions commonly found at the interspecies level. Additionally, we demonstrate that disrupting and rescuing organellar DNA maintenance could drive the rapid evolution of dominant mitochondrial genome conformations.
Conclusions: Our study provides an unprecedentedly detailed view of the dynamics of organellar genomes at pan-genome scale in Arabidopsis thaliana, paving the way to unlock the full potential of organellar genetic resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337487 | PMC |
http://dx.doi.org/10.1186/s13059-025-03717-0 | DOI Listing |
Rev Argent Microbiol
September 2025
IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.
Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, PR China. Electronic address:
As the weed Echinochloa phyllopogon has rapidly developed multi- and cross-resistance to several herbicides, we aimed to determine the mechanism underlying penoxsulam resistance in weeds. There was no target mutation in the tested population, and P450 enzyme activity was significantly higher in the penoxsulam-treated resistant population, confirming that non-target-site resistance was dominant. The antioxidant enzyme activity of the resistant population was higher than that of the sensitive population following the application of the penoxsulam and cleared HO faster.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz
Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.
View Article and Find Full Text PDFCell Rep
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Seedlings emerged from the covering soil immediately undergo de-etiolation, ensuring plants switch from heterotrophic to photoautotrophic growth. This transition is essential for seedling development and survival. However, the underlying mechanism remains largely obscure.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2025
University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:
The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).
View Article and Find Full Text PDF