98%
921
2 minutes
20
Aims: A computer-aided diagnosis (CAD) system for automated evaluation of developmental dysplasia of the hip (DDH) via ultrasound, integrating Deep Learning (DL) for anatomical segmentation and performing α&β angle calculations utilizing the Graf Method is presented. A custom image processing method excludes the inferior ilium's curvature during the baseline definition, enhancing accuracy and replicating radiologists' real-world workflow.
Materials And Methods: Our dataset comprised 452 raw images from 370 newborns. For {'validation'+"test"}, {'nv=91'+"nte=45"}≡136 images were reserved (never augmented). Remaining 316 images were augmented to ntr=632 with (0%↔25%) random brightness manipulation for training. Totally (632+136)=768 images were annotated and split with the following true numbers and percentage: {'train',"validation",test}≡{'632',"91",45}≡{'82%',"12%",6%}. U-Net, MaskR-CNN, YOLOv8 and YOLOv11 were used for segmentation. α&β were measured using Method-I (centroid/orientation) and Method-II (Hough transform). An extended set of performance metrics-Precision, Recall, IoU, Dice, mAP-was calculated. Bland-Altman and Intraclass Correlation Coefficient (ICC) analyses compared CAD outputs with expert measurements.
Results: YOLOv11 showed the best segmentation performance (Precision:0.990, Recall:0.993, IoU:0.983, Dice:0.990, mAP:0.991). {ICCα, ICCβ} calculated using Method-I and Method-II were {0.895, 0.907} and {0.929, 0.952}, respectively, with Method-II outperforming Method-I.
Conclusion: A clinically-aligned-CAD-system that integrates anatomical segmentation and α&β measurement-a combination rarely addressed in literature is introduced. By providing a comprehensive and standardized set of metrics, this work overcomes a common bottleneck in DL studies, namely heterogeneity in metric reporting, enabling better cross-study comparisons. Following curvature exclusion, obtained ICCs outperformed previous studies, demonstrating improved inter-rater reliability and strong agreement with expert radiologists, offering both technical robustness and clinical applicability in DDH assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11152/mu-4535 | DOI Listing |
J Biomed Opt
September 2025
Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany.
Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.
Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.
Med Phys
September 2025
School of Computer, Electronics and Information, Guangxi University, Nanning, China.
Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2025
Zhengzhou University, School of Computer and Artificial Intelligence, Zhengzhou, 450001, China. Electronic address:
Background And Objective: The early detection of breast cancer plays a critical role in improving survival rates and facilitating precise medical interventions. Therefore, the automated identification of breast abnormalities becomes paramount, significantly enhancing the prospects of successful treatment outcomes. To address this imperative, our research leverages multiple modalities such as MRI, CT, and mammography to detect and screen for breast cancer.
View Article and Find Full Text PDFEur Radiol Exp
September 2025
Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.
Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.
Dig Liver Dis
September 2025
Department of Gastroenterology, Valduce Hospital, Como, Italy. Electronic address:
Objectives: Computer-aided detection (CADe) systems improve adenoma detection during colonoscopy, but the influence of bowel preparation quality on CADe performance is unclear. This study assessed whether different levels of adequate bowel preparation affect CADe effectiveness.
Methods: A post-hoc pooled analysis was conducted using individual patient data from three randomized controlled trials comparing CADe-assisted colonoscopy to standard colonoscopy (SC).