Background: Radial k-space sampling is widely employed in paediatric magnetic resonance imaging (MRI) to mitigate motion and aliasing artefacts. Artificial intelligence (AI)-based image reconstruction has been developed to enhance image quality and accelerate acquisition time.
Objective: To assess image quality of deep learning (DL)-based denoising image reconstruction of body MRI in children.
Pulmonary complications are known to occur in patients after Fontan palliation. Cardiac MRI is performed in the follow-up of Fontan patients to assess single ventricular function, hemodynamics and potential collateral flow. To date, pulmonary function tests have been used to detect functional lung impairment, but lung MRI has not been integrated into imaging follow-up.
View Article and Find Full Text PDFChest imaging in children presents unique challenges due to varying requirements across age groups. For chest radiographs, achieving optimal images often involves careful positioning and immobilisation techniques. Antero-posterior projections are easier to obtain in younger children, while lateral decubitus radiographs are sometimes used when expiratory images are difficult to obtain and for free air exclusion.
View Article and Find Full Text PDFBackground: Left pulmonary artery (LPA) stenting is often required in single ventricle (SV) patients. Due to their close anatomical relationship an LPA stent could potentially compress the left main bronchus (LMB). We assessed the impact of LPA stenting on bronchial size, pulmonary volumes, and lung function in a cohort of SV patients.
View Article and Find Full Text PDFPurpose: Four-dimensional time-resolved phase-contrast cardiovascular magnetic resonance imaging (4D flow MRI) enables blood flow quantification in multiple vessels, which is crucial for patients with congenital heart disease (CHD). We investigated net flow volumes in the ascending aorta and pulmonary arteries by four different postprocessing software packages for 4D flow MRI in comparison with 2D cine phase-contrast measurements (2D PC).
Material And Methods: 4D flow and 2D PC datasets of 47 patients with biventricular CHD (median age 16, range 0.
J Cardiovasc Magn Reson
July 2023
Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'.
View Article and Find Full Text PDFIn many cardiac diseases, right and left ventricular volumes in systole and diastole are diagnostically and prognostically relevant. Measurements are made by segmentation of the myocardial borders on cardiac magnetic resonance (CMR) images. Automatic detection of myocardial contours is possible by signal thresholding techniques, but must be validated before use in clinical settings.
View Article and Find Full Text PDFIntroduction: The aim of this study was to evaluate the feasibility of identifying the fetal cardiac and thoracic vascular structures with non-gated dynamic balanced steady-state free precession (SSFP) MRI sequences.
Methods: We retrospectively assessed the visibility of cardiovascular anatomy in 60 fetuses without suspicion of congenital heart defect. Non-gated dynamic balanced SSFP sequences were acquired in three anatomic planes of the fetal thorax.
Int J Cardiovasc Imaging
February 2023
Purpose: We assessed the impact of bicuspid aortic valve (BAV), aortic stenosis (AS), and regurgitation (AR) on the metrics of left ventricular (LV) remodeling, as measured by electrocardiogram (ECG), transthoracic echocardiography (TTE), and cardiac magnetic resonance (CMR).
Methods: This retrospective CMR study included 11 patients with both AS and AR (BAV-ASR), 30 with AS (BAV-AS), 28 with AR (BAV-AR), 47 with neither AS nor AR (BAV-no_AS/AR), and 40 with trileaflet aortic valve (TAV-no_AS/AR). CMR analysis included the LV end-diastolic volume index (LVEDVi), mass index (LVMi), and extracellular volume fraction (ECV).
Purpose: To find the best level to measure aortic flow for quantification of aortic regurgitation (AR) in 4D flow CMR.
Methods: In 27 congenital heart disease patients with AR (67% male, 31 ± 16 years) two blinded observers measured antegrade, retrograde, net aortic flow volumes and regurgitant fractions at 6 levels in 4D flow: (1) below the aortic valve (AV), (2) at the AV, (3) at the aortic sinus, (4) at the sinotubular junction, (5) at the level of the pulmonary arteries (PA) and (6) below the brachiocephalic trunk. 2D phase contrast (2DPC) sequences were acquired at the level of PA.
Purpose: Lung magnetic resonance imaging (MRI) using conventional sequences is limited due to strong signal loss by susceptibility effects of aerated lung. Our aim is to assess lung signal intensity in children on ultrashort echo-time (UTE) and zero echo-time (ZTE) sequences. We hypothesize that lung signal intensity can be correlated to lung physical density.
View Article and Find Full Text PDFPediatr Cardiol
October 2021
Cardiac MR (CMR) is a standard modality for assessing ventricular function of single ventricles. CMR feature-tracking (CMR-FT) is a novel application enabling strain measurement on cine MR images and is used in patients with congenital heart diseases. We sought to assess the feasibility of CMR-FT in Fontan patients and analyze the correlation between CMR-FT strain values and conventional CMR volumetric parameters, clinical findings, and biomarkers.
View Article and Find Full Text PDFRheumatology (Oxford)
November 2021
Objectives: To use 4D-flow MRI to describe systemic and non-systemic ventricular flow organisation and energy loss in patients with repaired d-transposition of the great arteries (d-TGA) and normal subjects.
Methods: Pathline tracking of ventricular volumes was performed using 4D-flow MRI data from a 1.5-T GE Discovery MR450 scanner.
Pediatr Radiol
July 2021
Cardiovascular MRI has become an essential imaging modality in children with congenital heart disease (CHD) in the last 15-20 years. With use of appropriate sequences, it provides important information on cardiovascular anatomy, blood flow and function for initial diagnosis and post-surgical or -interventional monitoring in children. Although considered as more sophisticated and challenging than CT, in particular in neonates and infants, MRI is able to provide information on intra- and extracardiac haemodynamics, in contrast to CT.
View Article and Find Full Text PDFArthritis Res Ther
October 2020
Background: There has been a shift in recent years to using ultrasound (US) and magnetic resonance imaging (MRI) as first-line investigations for suspected cranial large vessel vasculitis (LVV) and is a new recommendation by the EULAR 2018 guidelines for imaging in LVV. This cross-sectional study compares the performance of US and MRI and contrast-enhanced magnetic resonance angiography (MRA) for detecting vasculitis in patients with giant cell arteritis (GCA).
Methods: Patients with new-onset or already diagnosed GCA were recruited.
Background: MRI of lung parenchyma is challenging because of the rapid decay of signal by susceptibility effects of aerated lung on routine fast spin-echo sequences.
Objective: To assess lung signal intensity in children on ultrashort echo-time sequences in comparison to a fast spin-echo technique.
Materials And Methods: We conducted a retrospective study of lung MRI obtained in 30 patients (median age 5 years, range 2 months to 18 years) including 15 with normal lungs and 15 with cystic fibrosis.
Background: A radiation-free advanced imaging modality is desirable for investigating congenital thoracic malformations in young children.
Objective: To describe magnetic resonance imaging (MRI) findings of congenital bronchopulmonary foregut malformations and investigate the ability of lung MRI for their classification.
Materials And Methods: This is a retrospective analysis of consecutive MRI examinations performed for suspected congenital lung anomalies in 39 children (median age: 3.
Radiol Cardiothorac Imaging
June 2019
Purpose: To investigate the two-center feasibility of highly k-space and time (k-t)-accelerated 2-minute aortic four-dimensional (4D) flow MRI and to evaluate its performance for the quantification of velocities and wall shear stress (WSS).
Materials And Methods: This cross-sectional study prospectively included 68 participants (center 1, 11 healthy volunteers [mean age ± standard deviation, 61 years ± 15] and 16 patients with aortic disease [mean age, 60 years ± 10]; center 2, 14 healthy volunteers [mean age, 38 years ± 13] and 27 patients with aortic or cardiac disease [mean age, 78 years ± 18]). Each participant underwent highly accelerated 4D flow MRI (k-t acceleration, acceleration factor of 5) of the thoracic aorta.
Purpose: To analyze the dependence of flow volume measurements on 3D cine phase-contrast MRI (4D-flow MRI) background phase correction.
Methods: In 31 subjects scanned on a 1.5T MRI scanner, flow volume measurements at 4 vessels were made using phantom corrected 2D phase contrast and 4D flow with background phase correction performed by linear, second, third, and fourth-order polynomial fitting to static tissue.