Identification of a heparin-binding protein encoded by gene in .

J Bacteriol

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a highly infectious pathogenic microorganism that causes various clinical signs in cattle, including pneumonia, arthritis, and mastitis, often resulting in significant economic losses. The adhesion of to host cells is a pivotal step in the infection process, which is a complex process involving multiple pathogenic and host proteins. Molecules involved in adhesion and colonization are widely recognized as important virulence factors and often implicated in the infection and pathogenesis. In this study, the gene of was cloned, and the protein encoded by this gene was expressed and purified. The rabbit polyclonal antibody against this protein was also produced. This protein was shown to be a surface protein and to react with the -positive serum. The ability of this protein to adhere to host cells was verified using embryonic bovine lung (EBL) and Madin-Darby bovine kidney (MDBK) cells. Furthermore, the adhesion function of this protein was found to be achieved through interaction with heparin on the host cell surface, and the key region of the protein involved in heparin binding was identified. The conservation of the protein encoded by the gene was also analyzed. The results of this study suggest that the protein encoded by the gene is a heparin-binding surface membrane protein of associated with infection.IMPORTANCEMycoplasmas lack a cell wall, and the membrane proteins interacting with host cells play essential roles in their infection and proliferation processes. In this study, we identified a membrane protein encoded by that interacts with heparin on the surface of host cells. Heparin is widely distributed in various cells and tissues of the host and serves as a receptor for the infection and invasion of many pathogenic microorganisms. The ability of to invade multiple tissues may be related to its heparin-binding capacity. The heparin-binding protein identified in this study is valuable for further research on the infection and invasion mechanisms of .

Download full-text PDF

Source
http://dx.doi.org/10.1128/jb.00160-25DOI Listing

Publication Analysis

Top Keywords

protein encoded
20
encoded gene
16
host cells
16
protein
13
heparin-binding protein
8
membrane protein
8
infection invasion
8
host
7
cells
6
encoded
5

Similar Publications

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

A pediatric-onset case of chronic kidney disease caused by a novel sporadic variant and literature review.

Turk J Pediatr

September 2025

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: The α-actinin-4 (ACTN4) gene encodes an actin-binding protein, which plays a crucial role in maintaining the structure and function of podocytes. Previous studies have confirmed that ACTN4 mutations can lead to focal segmental glomerulosclerosis-1 (FSGS1), a rare disease primarily manifesting in adolescence or adulthood, characterized by mild to moderate proteinuria, with some cases progressing slowly to end-stage renal disease.

Case Presentation: We report a 12.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

The Influence of Single-Stranded or Double-Stranded DNA Tags on Ligand Binding Affinity in DNA-Encoded Libraries.

Anal Chem

September 2025

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

DNA-encoded libraries have become widely used in drug discovery, and several different setups to link chemical compounds to DNA have been employed in the field, including single-stranded and double-stranded DNA tags as well as a variety of linker chemistries. In our previous study, we observed distinct differences in binding affinities between ligands coupled either to single-stranded or double-stranded DNA; however, the molecular basis for these differences remained unclear. Here, we present a native ion mobility mass spectrometry approach that incorporates gas- and solution-phase activation techniques to systematically investigate these differences, specifically the impact of DNA tags on binding performance in protein-ligand interactions.

View Article and Find Full Text PDF