98%
921
2 minutes
20
Silica coating is widely employed to improve the stability of perovskite quantum dots (PQDs) as light conversion phosphors. When used in combination with micro-light-emitting diodes (micro-LEDs) for next-generation displays, however, most silica-coated PQDs (Si-PQDs) face some challenges: (i) polarity mismatch between silica and organic solvent undermines the fabrication of the phosphor film by unstable PQD ink; (ii) aggregation-induced large particle size hinders the micron-scale processability. Herein, we report a ligand-assisted silica-coating strategy to prepare highly monodispersed Si-PQDs for micro-LEDs. Briefly, pristine CsPbBr QDs capped with aminosiloxane were first formed followed by surface passivation with the zwitterionic ligand lecithin and subsequent tetramethoxysilane-mediated silica coating. The as-prepared Si-PQDs were highly monodispersed with well-defined core-shell structure, exhibiting uniform rectangular morphology, narrow-band green emission, ultrahigh photoluminescence quantum yield (∼98%), and high stability against light and water. Importantly, the Si-PQDs were well dispersed in organic solvents, which could not only be fabricated into white LEDs and screen-printed patterns but also patterned into uniform 20 μm pixels using a microfluidic technique. These results demonstrate that the one-pot synthesized Si-PQDs are very promising light conversion phosphors for micro-LED-based displays and solid-state lighting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c07518 | DOI Listing |
Anal Chim Acta
November 2025
Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, 10000, Viet Nam. Electronic address:
Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Objective: Breast cancer remains the most prevalent cancer among females globally, with an alarming rise in incidence. Conventional treatments like chemotherapy face several limitations, necessitating innovative approaches. In this study, the efficacy of a novel chemo-/sonodynamic/photothermal triune therapy utilizing paclitaxel-loaded gold nanoparticles (PTX@GNPs) for MCF-7 breast cancer cells treatment was explored.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye
Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Kangwon, 24341, Republic of Korea.
Alzheimer's disease (AD) represents a growing global health burden, underscoring the urgent need for reliable diagnostic and prognostic biomarkers. Although several disease-modifying treatments have recently become available, their effects remain limited, as they primarily delay rather than halt disease progression. Thus, the early and accurate identification of individuals at elevated risk for conversion to AD dementia is crucial to maximize the effectiveness of these therapies and to facilitate timely intervention strategies.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Orthordontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China. Electronic address: 20
Nanomaterials are widely used. The gases emitted from industrial manufacturing contain nanoparticles, which increases the chance of nanomaterials coming into contact with the eyes. Nanomaterials may cause damage to the eyeball wall and eye contents, manifested as keratitis, neovascularization of the iris, vitreous inflammation, retinitis, etc.
View Article and Find Full Text PDF