98%
921
2 minutes
20
Fluorescence in situ hybridization (FISH) is a simple, rapid, and reliable method for detecting genomic alterations relevant to a wide range of diseases, particularly neoplastic disorders, using routine surgical and cytological specimens. By employing fluorescent-labeled nucleic acid or nucleotide analog probes to target specific DNA sequences on chromosomes, FISH facilitates accurate diagnosis, tumor classification, biomarker identification, selection of targeted therapies, and monitoring of treatment efficacy. As the technology continues to evolve, the demand for FISH is expected to grow, given its cost-effectiveness in supporting diagnostic and therapeutic decisions. However, to fully leverage the potential of this powerful technique, it is essential to be mindful of its underlying chemistry, potential artifacts, interpretive challenges, and the broader clinical context. This article provides an overview of the fundamental principles of FISH data analysis, addresses technical considerations and implementation challenges, and discusses diagnostic criteria, cutoff values, quality control measures, test validation processes, and interpretation of results - with a focus on its application in daily surgical pathology practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humpath.2025.105906 | DOI Listing |
J Matern Fetal Neonatal Med
December 2025
Section of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.
Objective: To evaluate the association between low-volume chorionic villus sampling (CVS) and delay in patient care.
Methods: This is a retrospective cohort study of patients who underwent CVS from 8/19/2019 to 12/31/2022 in a single center. The exposure was low-volume CVS, defined as less than 15 mg of sample.
Chem Pharm Bull (Tokyo)
September 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China. Electronic address:
Background: Daminozide is a commonly utilized plant growth regulator. Both daminozide and its hydrolysis product, 1,1-dimethyl hydrazine ((CH)NNH), exhibit carcinogenic and teratogenic toxicity. Accurate detection of daminozide in food is of great significance to human health.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China; Research Center of Dental Esthetics and B
This study examined the pH-dependent (3, 5, and 7) regulation of matrix metalloproteinase (MMP) activity by cathepsin K (catK) and glycosaminoglycans (GAGs) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence assays, and human dentin slice experiments. The direct effects of catK were evaluated in the catK-active, catK-deficient, and odanacatib (ODN)-inhibited groups, whereas indirect GAG/ tissue inhibitor of metalloproteinase (TIMP)-mediated regulation was assessed in the catK-active, ODN-inhibited, and chondroitin sulfate (CS)-treated groups through dimethylmethylene blue (DMMB) assays, in situ zymography, and immunofluorescence staining. CatK directly activated MMP-2 (62 kDa) and MMP-9 (82 kDa) at all pH values, with no activation observed in the ODN-inhibited or catK-deficient groups.
View Article and Find Full Text PDFExp Cell Res
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:
Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.
View Article and Find Full Text PDF