Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atomic-resolution imaging of Ruddlesden-Popper (RP) interfaces is challenging due to their concealment within perovskite nanocrystals (NCs) and the inherent limitations of conventional characterization techniques. In this study, distinctly oriented RP faults have been detected using double-Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (STEM). A simple yet reliable STEM approach to achieve atomically precise identification of Pb, Cs, Br, and I atoms and analyze their spatial atomic arrangements in a single NC is employed. In addition, dislocations caused by lattice mismatch at grain boundaries (GBs) are identified. Lattice strain in GBs and RPs is determined and quantified, revealing that neither of these planar defects introduces the deep trap levels. Therefore, in absence of Pb dangling bonds or Pb─Pb bonds in GBs and RPs plays a crucial role in stabilizing NCs and preventing ion migration. Incorporating n-octylammonium iodide in pristine CsPbBr quantum dots leads to the formation of CsPbBr I NCs, resulting in a significant redshift in electroluminescence (≈496-623 nm) with enhanced intensity (±79%), attributed to higher exciton lifetime, increased exciton binding energy, and improved carrier confinement in flexible light-emitting devices. Density functional theory calculations confirm that additional carriers localized at the interface enhance electron-hole recombination, ensuring stable charge transportation for lighting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202503680DOI Listing

Publication Analysis

Top Keywords

atomically precise
8
gbs rps
8
precise ruddlesden-popper
4
ruddlesden-popper faults
4
faults induced
4
induced enhanced
4
enhanced emission
4
emission ligand
4
ligand stabilized
4
stabilized mixed
4

Similar Publications

Coordination-inspired assembly of binary nanocrystal superlattices featuring a diamond-like sublattice.

J Colloid Interface Sci

September 2025

Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200438, China. Electronic address:

We present a coordination-inspired strategy for assembling binary nanocrystal superlattices (BNSLs) using CdSe nanotetrapods as symmetry-encoding building blocks. Exploiting their intrinsic tetrahedral geometry, which mimics the sp hybridization of carbon atoms in a diamond lattice, we encode spatially defined binding sites that guide regioselective coassembly with spherical nanocrystals. By tuning the size ratio between components, we achieve both three-dimensional and two-dimensional BNSLs with long-range structural order.

View Article and Find Full Text PDF

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

On-Chip Emitter-Coupled Meta-Optics for Versatile Photon Sources.

Phys Rev Lett

August 2025

University of Southern Denmark, Centre for Nano Optics, Campusvej 55, Odense M DK-5230, Denmark.

Controlling the spontaneous emission of nanoscale quantum emitters (QEs) is crucial for developing advanced photon sources required in many areas of modern nanophotonics, including quantum information technologies. Conventional approaches to shaping photon emission are based on using bulky configurations, while approaches recently developed in quantum metaphotonics suffer from limited capabilities in achieving desired polarization states and directionality, failing to provide on-demand photon sources tailored precisely to technological needs. Here, we propose a universal approach to designing versatile photon sources using on-chip QE-coupled meta-optics that enable direct transformations of QE-excited surface plasmon polaritons into spatially propagating photon streams with arbitrary polarization states, directionality, and amplitudes via both resonance and geometric phases supplied by scattering meta-atoms.

View Article and Find Full Text PDF

Lifetimes of the Metastable 6d ^{2}D_{5/2} and 6d ^{2}D_{3/2} State of Ra^{+}.

Phys Rev Lett

August 2025

the University of Maryland, National Institute of Standards and Technology, University of Delaware, Department of Physics and Astronomy, Newark, Delaware 19716, USA and Joint Quantum Institute, College Park, Maryland 20742, USA.

We report lifetime measurements of the metastable 6d ^{2}D_{5/2} and 6d ^{2}D_{3/2} states of Ra^{+}. The measured lifetimes, τ_{5}=303.8(1.

View Article and Find Full Text PDF

Atom-precise coinage metal nanoclusters for near-infrared emission: excited-state dynamics and mechanisms.

Chem Soc Rev

September 2025

State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.

View Article and Find Full Text PDF