Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: During chest CT examinations, the breasts are exposed to a significant amount of radiation, increasing the risk of radiation-induced cancers. The objective of this study is to develop and evaluate a novel silicon rubber-barium sulfate (BaSO4) composite breast shield for reducing radiation dose in chest computed tomography (CT) examinations while minimizing impact on image quality.

Methods: Four breast shields were fabricated: one with 10% bismuth and three with 10%, 15%, and 20% BaSO4. Dose reduction was assessed using a thorax phantom and ionization chamber. Image quality effects were evaluated in the thorax phantom by measuring noise and CT number changes. The 10% barium shield was further tested on 22 patients undergoing chest CT.

Results: The 10%, 15%, and 20% barium shields reduced breast dose by 36.8%, 38.6%, and 45.6%, respectively, while the 10% bismuth shield achieved a 63.1% reduction. However, the 10% barium shield had minimal impact on image quality, increasing lung noise by only 0.3 Hounsfield units (HU) and shifting CT numbers by 4.7 HU. In patient studies, 81.8% of scans showed no artifacts, with 18.2% showing slight artifacts.

Conclusion: The 10% BaSO4 shield effectively reduced breast dose while maintaining image quality, presenting a viable alternative to bismuth shielding for radiation protection in chest CT examinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331176PMC
http://dx.doi.org/10.4103/jmss.jmss_61_24DOI Listing

Publication Analysis

Top Keywords

image quality
16
radiation dose
8
dose reduction
8
chest computed
8
computed tomography
8
silicon rubber-barium
8
rubber-barium sulfate
8
chest examinations
8
impact image
8
10% bismuth
8

Similar Publications

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Rotator cuff tendinopathy is a common cause of shoulder pain and dysfunction, presenting in two primary forms: calcific and non-calcific. These subtypes differ significantly in their pathophysiology, clinical manifestations, and natural history, necessitating tailored diagnostic and therapeutic approaches. This review delineates the clinical presentations of calcific rotator cuff tendinopathy (RCCT), characterized by distinct pre-calcific, calcific, and post-calcific stages, and contrasts them with the more insidious, degenerative course of non-calcific rotator cuff tendinopathy.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF

Background: The use of artificial intelligence platforms by medical residents as an educational resource is increasing. Within orthopaedic surgery, older Chat Generative Pre-trained Transformer (ChatGPT) models performed worse than resident physicians on practice examinations and rarely answered questions with images correctly. The newer ChatGPT-4o was designed to improve these deficiencies but has not been evaluated.

View Article and Find Full Text PDF