98%
921
2 minutes
20
We investigate the use of quantum computing algorithms on real quantum hardware to tackle the computationally intensive task of feature selection for light-weight medical image datasets. Feature selection is often formulated as a k of n selection problem, where the complexity grows binomially with increasing k and n. Quantum computers, particularly quantum annealers, are well-suited for such problems, which may offer advantages under certain problem formulations. We present a method to solve larger feature selection instances than previously demonstrated on commercial quantum annealers. Our approach combines a linear Ising penalty mechanism with subsampling and thresholding techniques to enhance scalability. The method is tested in a toy problem where feature selection identifies pixel masks used to reconstruct small-scale medical images. We compare our approach against a range of feature selection strategies, including randomized baselines, classical supervised and unsupervised methods, combinatorial optimization via classical and quantum solvers, and learning-based feature representations. The results indicate that quantum annealing-based feature selection is effective for this simplified use case, demonstrating its potential in high-dimensional optimization tasks. However, its applicability to broader, real-world problems remains uncertain, given the current limitations of quantum computing hardware. While learned feature representations such as autoencoders achieve superior reconstruction performance, they do not offer the same level of interpretability or direct control over input feature selection as our approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332019 | PMC |
http://dx.doi.org/10.1038/s41598-025-14611-x | DOI Listing |
J Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDFJ Med Chem
September 2025
Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.
View Article and Find Full Text PDFJMIR Hum Factors
September 2025
College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
Background: The rapid advancement of next-generation sequencing has significantly expanded the landscape of precision medicine. However, health care professionals face increasing challenges in keeping pace with the growing body of oncological knowledge and integrating it effectively into clinical workflows. Precision oncology decision support (PODS) tools aim to assist clinicians in navigating this complexity, yet their current functionalities only partially address clinical needs.
View Article and Find Full Text PDFPlant Biol (Stuttg)
September 2025
Department of Botany and Center for Biotechnology, Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.
View Article and Find Full Text PDFAnn Am Thorac Soc
September 2025
University of California Los Angeles David Geffen School of Medicine, Medicine, Los Angeles, California, United States.
Rationale: Inflammation is central to chronic obstructive pulmonary disease (COPD) pathogenesis but incompletely represented in COPD prognostic models. Neutrophil to lymphocyte ratio (NLR) is a readily available inflammatory biomarker.
Objectives: To explore the associations of NLR with smoking status, clinical features of COPD, and future adverse outcomes.