98%
921
2 minutes
20
Drought stress is an important abiotic stress affecting maize (Zea mays L.) growth and productivity. Class III peroxidases (PODs) are plant-specific enzymes that play crucial roles in plant growth, development, and responses to abiotic stress. However, only a few studies have been conducted on the responses of PODs to drought stress in maize. In the present study, we identified a maize POD gene, ZmPOD5, whose expression was prominently upregulated by drought stress. ZmPOD5 overexpression lines showed enhanced drought tolerance, as evidenced by the improved survival rates and increased relative water content (RWC), alleviating water loss rate, malondialdehyde (MDA) content, relative electrical conductivity (REC), O• content, and reactive oxygen species (ROS) accumulation, whereas enhancing the activities of ROS-scavenging/antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). In contrast, ZmPOD5-KO and ems3-06a97c mutants displayed opposite phenotypic and physiological responses under drought stress. Transcriptome sequencing analysis further revealed that drought stress substantially altered the expression patterns of genes involved in the stimulus response and oxidation-reduction processes in ZmPOD5-OE lines and ZmPOD5-KO mutants. These results demonstrated that ZmPOD5 functions as a positive regulator of maize response to drought stress. This study will provide new insights into the role of PODs in regulating drought tolerance in maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2025.112699 | DOI Listing |
Theor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFPhytopathology
September 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Fusarium crown rot (FCR) is a soilborne disease that occurs in many cereal-growing regions in the world. An association between FCR development and drought stress has long been known. The FCR symptoms are pronounced under drought stress in both fields and controlled environments.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA.
Ensuring sufficient crop yields in an era of rapid population growth and limited arable land requires innovative strategies to enhance plant resilience and sustain, or even improve, growth and productivity despite environmental stress. Besides symbiotic nitrogen fixation, rhizobia may play a central role in sustainable agriculture by alleviating the detrimental effects of ethylene-a key stress hormone in plants-especially under conditions like drought through the deamination of 1-aminocyclopropane-1-carboxylic acid (ACC). In this study, we focused on genetically engineering a new Bradyrhizobium sp.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan (MI), Italy.
Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.
View Article and Find Full Text PDF