Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Cell therapy is regarded as a significant and therapeutic strategy for treating spinal cord injury (SCI). This systematic review was conducted to assess Schwann cell (SC) therapy and its effect on functional recovery, axonal regeneration, and remyelination.

Methods: By a systematic review study, all associated articles that investigated the effect of Schwann cell therapy on functional recovery, axonal regeneration and remyelination and were published between 1995 and 2024 were evaluated through searching in PubMed, Google Scholar, Scopus and Web of Science. The following keywords were searched: spinal cord injury, Schwann cell therapy, transplantation, functional recovery, axonal regeneration, and remyelination and Boolean operators were used to increase the search results: "(Remyelination OR Regeneration OR Transplantation) AND (Spinal Cord Injury)", "Spinal Cord Injury AND Schwann cell", "Spinal Cord Injury AND Schwann cell AND transplantation" and the search was filtered for species, injury type, experimental study, interventional study, clinical trial study, systematic review and meta-analysis study and was limited to articles in English and Persian languages.

Results: The results of studies on animal samples showed significant functional recovery of cases treated using SCs. However, the success of cell therapy in human experiments has not been established; moreover, researchers should consider other therapeutic approaches in addition to cell transplantation, especially combination therapy.

Discussion: Studies have shown that Schwann cell transplantation into a contused spinal cord can result in axonal regeneration and functional recovery, similar to the repair models involving spinal cord transection. Therefore, an understanding of the results of Schwann cell therapy on functional recovery, axonal regeneration, and remyelination in spinal cord injury is necessary and helpful.

Conclusion: Schwann cell transplantation promotes functional recovery and axonal regeneration in SCI animal models, but human translation requires further investigation, highlighting the need for combinatorial therapies.

Download full-text PDF

Source
http://dx.doi.org/10.2174/011574888X368052250722173956DOI Listing

Publication Analysis

Top Keywords

schwann cell
32
functional recovery
32
cell therapy
28
axonal regeneration
28
spinal cord
28
recovery axonal
24
cord injury
24
therapy functional
16
regeneration remyelination
16
systematic review
16

Similar Publications

Human myelinated brain organoids with integrated microglia as a model for myelin repair and remyelinating therapies.

Sci Transl Med

September 2025

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.

View Article and Find Full Text PDF

Introduction/aims: Therapeutic electrical stimulation (ES) of repaired nerves has been demonstrated to improve muscle function. Previous studies applied ES to the proximal transected nerve end (P-ES) with benefits to the neuronal cell body. We investigated whether a single ES dose applied to the distal end (D-ES) or distal and proximal ends (DP-ES) prior to nerve repair provides benefits to neuromuscular junction (NMJ) and muscle recovery.

View Article and Find Full Text PDF

Vitamin D Binding Protein, a Ligand of Integrin beta 1, Motivates Both Tumor Cells and Schwann Cells to Promote Perineural Invasion in Pancreatic Ductal Adenocarcinoma.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Perineural invasion (PNI) is a common pathological characteristic of pancreatic ductal adenocarcinoma (PDAC), closely linked to postoperative recurrence, metastasis, and unfavorable prognosis. Nevertheless, the precise mechanisms that govern PNI in PDAC remain poorly elucidated. Here, group-specific component protein (GC) is identified as one of the most significantly upregulated genes related to PNI, primarily derived from malignant ductal cells compared to other cell types.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN), a severe microvascular complication of diabetes, is closely associated with neuroinflammation. This study aimed to investigate the mechanism of circ_0002590 in neuroinflammation associated with PDN.The Schwann cells (HEI193) were treated with high glucose (HG, 150 mM) to simulate the diabetic microenvironment.

View Article and Find Full Text PDF

Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study aimed to evaluate and compare the effects on cellular metabolic function and reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann cells (SCs), an DPN model, with those of metformin (Met), a conventional antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have been implicated in the pathogenesis of DPN, were also investigated.

View Article and Find Full Text PDF