Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineering thermal strain is crucial for tuning the properties and functionalities of transition metal dichalcogenides (TMDs). Thermal strain arises from the thermal expansion coefficient (TEC) mismatch between TMDs and substrates, but conventional substrates often induce inhomogeneous broadening in the electronic structure, mainly due to surface roughness and charged impurities. Here, we demonstrate uniform thermal strain in monolayer WSe via van der Waals epitaxy on graphene/SiC(0001) substrates. Compared to WSe grown on graphite, its photoluminescence peaks show a redshift and line width narrowing of about 30%. These results suggest that uniform tensile strain is introduced to WSe due to the small TEC of SiC, and interfacial graphene suppresses the inhomogeneous broadening. Furthermore, tensile-strained monolayer MoS grown on graphene/SiC exhibits enhanced catalytic activity for the hydrogen evolution reaction. Our findings highlight the potential of the graphene/SiC substrate as a platform for improved strain engineering in TMDs, enabling future applications in electronics, optoelectronics, and electrocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c02492DOI Listing

Publication Analysis

Top Keywords

thermal strain
12
improved strain
8
strain engineering
8
transition metal
8
metal dichalcogenides
8
van der
8
der waals
8
waals epitaxy
8
epitaxy graphene/sic0001
8
inhomogeneous broadening
8

Similar Publications

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

Introduction: To improve the work efficiency and reduce heat-related illness of emergency rescue personnel, the effects of emergency rescue clothing on physiological and perceptual responses were investigated.

Methods: Thirteen participants were recruited to perform human trials in a climate chamber wherein the ambient temperature and relative humidity was controlled at 35°C and 75%, and 25°C and 65%, respectively. Moreover, participants wearing emergency rescue clothing (ERC group) and T-shirts and shorts (CON group) walked at 4 and 6 km/h on a treadmill.

View Article and Find Full Text PDF

A thermostable paraoxonase (S3wahi-PON) from sp. strain S3wahi was recently characterised and shown to possess stability across a broad temperature range. This study expands upon the initial biochemical characterisation of S3wahi-PON by investigating the structural determinants and conformational adaptability that contribute to its thermostability, using an integrated approach that combines biophysical techniques and molecular dynamics (MD) simulations across a temperature range of 10 °C to 90 °C.

View Article and Find Full Text PDF

Background: Occupational heat stress recommendations aim to achieve thermal equilibrium and keep core temperature (T) below 38.0°C. We assessed the recommended alert limit curves when: (1) work-rest ratios are adjusted based on wet-bulb globe temperature (WBGT) at a fixed rate of metabolic heat production (H) and (2) H is adjusted based on WBGT at a fixed work-rest ratio.

View Article and Find Full Text PDF

Bioactive hydroxyapatite-sodium silicate waterglass reinforced with nanocollagen from Chitala ornata fish skin for bone engineering.

Int J Biol Macromol

September 2025

The Materials Engineering Department, Faculty of Engineering, Kasetsart University, Phaholyothin Rd., Bangkok 10900, Thailand. Electronic address:

A prototype bioactive calcium phosphate model-specifically hydroxyapatite (HA) derived from eggshells-was developed using a sodium silicate (NaSiO) solution as an inorganic binder, precursor, and reinforcing agent, in combination with collagen nanofibers for bone engineering applications. The sodium silicate solution, functioning as a waterglass adhesive, introduced cohesive forces within the hydroxyapatite matrix, thereby enhancing its physical, chemical, and mechanical properties. Eggshell-derived bioactive hydroxyapatite offers several advantages, including non-toxicity, biocompatibility, collagen adhesion, and the ability to mimic bone structure, making it suitable for tissue engineering.

View Article and Find Full Text PDF