98%
921
2 minutes
20
Almost all mutations of or identified in congenital macrothrombocytopenia induce constitutive activation of αIIbβ3. However, whether concomitant αIIbβ3 activation is essential for macrothrombocytopenia development remains unknown. Recently, we identified the β3(R760C) mutation that does not induce αIIbβ3 activation in a patient with macrothrombocytopenia. The family study showed that macrothrombocytopenia with reduced expression of αIIbβ3 and glycoprotein IV (GPVI) appeared to be associated with patients heterozygous for β3(R760C). We generated β3(R760C) knockin (KI) mice and investigated the effects of the mutation on platelet/megakaryote biology. Macrothrombocytopenia was decreased to 76% and 40% of platelet counts in heterozygous (Hetero) and homozygous (Homo) KI mice, respectively, when compared with the wild-type mice. Platelet αIIbβ3 and GPVI expression were decreased in KI mice, and αIIbβ3 activation was not detected in nonstimulated KI platelets. Thus, the hetero KI mice reproduced the phenotype of the human participant, indicating that the β3(R760C) mutation is responsible for the macrothrombocytopenia. Platelet aggregation, agonist-induced JON/A binding, and P-selectin expression were impaired in KI mice. Platelet spreading on fibrinogen was also impaired in Homo mice with adenosine 5'-diphosphate or thrombin stimulation. Filopodia and lamellipodia formation was impaired in fibrinogen-adhered megakaryocytes of Homo mice with significantly impaired RhoA activation. Proplatelet formation in Homo mice was impaired with abnormal morphology. In addition, platelet life span was shortened in Homo mice. These data indicate that the β3(R760C) mutation impairs the inside-out and outside-in signaling of αIIbβ3, and abnormal actin rearrangement and impaired RhoA activation may play major roles in macrothrombocytopenia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320448 | PMC |
http://dx.doi.org/10.1016/j.bvth.2024.100036 | DOI Listing |
Cell Mol Life Sci
September 2025
Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.
View Article and Find Full Text PDFJ Extracell Vesicles
September 2025
Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells.
View Article and Find Full Text PDFInt J Vitam Nutr Res
September 2025
Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, 300070 Tianjin, China.
Background: Retinol-binding protein 4 (RBP4) is a vitamin A transport protein synthesized in the liver and also plays a crucial role in inflammation and immune regulation. Low serum vitamin A levels have been observed in both pediatric and adult patients with ulcerative colitis (UC). The association between serum vitamin A levels and serum RBP4 levels, as well as the underlying mechanism involved inimpaired vitamin A transport during inflammation in UC patients, has yet to been investigated.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, Hebei Engineering University Affiliated Hospital, Handan, Hebei, China.
Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.
Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.
View Article and Find Full Text PDF