98%
921
2 minutes
20
Background: Ion and water transport in the central nervous system (CNS) is governed by tightly coupled mechanisms involving electrodiffusion, osmotic pressure, and fluid convection. Disruptions to these processes are implicated in pathological conditions. Understanding the coordinated roles of glial cells and perivascular spaces in regulating ionic and fluid homeostasis is essential for interpreting neural function and dysfunction.
Methods: We developed a multicompartment model of the optic nerve incorporating axons, glial cells, extracellular space (ECS), and three perivascular compartments (arterial, venous, and capillary-associated). The model integrates electrodiffusion of ions, osmotic water transport, and convection, while enforcing electroneutrality and compartmental volume conservation. Numerical simulations were performed using a finite volume method under axisymmetric geometry, and parameter sensitivity was explored through variations in glial membrane conductance, connexin permeability, and aquaporin-4 (AQP4) expression.
Results: The simulations reveal that potassium released from axons during stimulation is cleared via glial uptake and redistributed through electric drift within glial syncytia. The perivascular pathway provides a secondary route for potassium and water clearance. Decreased glial conductance leads to abnormal firing in unstimulated axons, mimicking epileptiform activity, while reduced connexin coupling increases dependence on perivascular drainage. Changes in AQP4 expression had limited effect on ionic homeostasis in the current model.
Conclusions: This model provides a biophysically consistent framework to study ionic-fluid coupling in CNS microcirculation. It demonstrates how glial and perivascular compartments cooperate to maintain extracellular potassium balance. The findings offer insight into the mechanisms underlying pathological K accumulation and suggest potential therapeutic targets involving glial modulation and perivascular enhancement. The framework is extensible to other brain regions and conditions involving impaired clearance or excitability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL39722 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States.
Purpose: To assess macular choriocapillaris (CC) metrics in healthy volunteers (HVs) without ocular disease and demonstrate CC variations in patients with inherited retinal dystrophies (IRDs) using adaptive optics optical coherence tomography angiography (AO-OCTA).
Methods: Twenty-one HVs and three IRD patients were imaged. Macular variation in 20 HVs in CC metrics (CC density, CC diameter, CC tortuosity, void diameter, void area, lobule count, lobule area, and RPE-CC distance) were assessed by imaging a 28° strip of overlapping AO-OCTA volumes (3° × 3°) from the optic nerve head to the temporal macula.
Cureus
August 2025
Faculty of Medicine, University of Costa Rica, San Jose, CRI.
This systematic review examines the potential association between semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, and the development of non-arteritic anterior ischemic optic neuropathy (NAION). Nine studies were included, consisting of retrospective cohort analyses, case series, and pharmacovigilance reports. Findings across the literature were inconsistent, with some studies reporting an increased risk while others found no significant association.
View Article and Find Full Text PDFCureus
August 2025
Emergency Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND.
Background Increased intracranial pressure (ICP) can be reliably detected at the bedside using the optic nerve sheath diameter (ONSD). The functional outcome in stroke patients can be predicted with the use of acute-phase ONSD dynamics. Objectives To determine the predictive accuracy of ONSD on days 0, one, and three for the prognosis of ischemic stroke patients presented to emergency medicine as measured by Modified Rankin Scale (mRS) score.
View Article and Find Full Text PDFNat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
September 2025
Purpose: During endoscopic endonasal access to small intraconal masses deep in the orbital apex, a line of fusion between inferior and medial recti is encountered distal to the termination of the common tendinous ring. The intraoperatively viewed length of this segment has not been quantified. To assist clinical recognition of this structure, our study quantifies its length and proposes the standardized nomenclature term of inferomedial extraocular muscle raphe (IM-EOMR).
View Article and Find Full Text PDF