98%
921
2 minutes
20
Background: Inflammation plays a pivotal role in the progression of tissue fibrosis. Our previous research demonstrated that Na, K-ATPase (NKA) α1 deficiency impairs mitochondrial function and accelerates isoproterenol (ISO)-induced cardiac remodeling. This study aims to investigate the interplay between inflammation and NKAα1 deficiency in ISO-induced cardiac fibrosis.
Methods: Age-matched male wild-type (WT) and NKAα1 mice received daily subcutaneous injections of ISO (30 mg/kg body weight) over 14 consecutive days. Comprehensive histopathological evaluation was performed to assess myocardial architecture and leukocyte infiltration profiles. Mitochondrial ultrastructure was analyzed using transmission electron microscopy. The molecular techniques of real-time quantitative polymerase chain reaction (RT-qPCR), immunoblotting, and enzyme-linked immunosorbent assay (ELISA) were utilized to quantify fibrotic markers and inflammatory mediators. A cell co-culture model was established to investigate the interactions between different cell types.
Results: NKAα1 haploinsufficiency exacerbated heart lesions and fibrosis, led to macrophage accumulation, and increased the expression of inflammatory factors in ISO-challenged hearts. Although NKAα1 deficiency did not directly activate macrophages or fibroblasts under ISO conditions, it significantly accelerated cardiomyocyte death in response to ISO insult. Paracrine crosstalk between damaged NKAα1 cardiomyocytes, macrophages, and fibroblasts amplified macrophage activation, inflammatory cytokine release, and fibroblast differentiation. Estrogen-related receptor α (ERRα) was identified as a key mediator of NKAα1 haploinsufficiency-induced cardiomyocyte death and interleukin-18 (IL-18) release. Furthermore, treatment with an NKAα1 DVEDSYGQQWTYEQR (DR)-region antibody mitigated ISO-induced cardiac fibrosis and macrophage infiltration.
Conclusion: This study provides evidence that NKAα1 deficiency exacerbates cardiac fibrosis by promoting ERRα-dependent cardiomyocyte death and by facilitating intercellular cross-talk between damaged NKAα1 cardiomyocytes, macrophages, and fibroblasts. Based on these findings, we suggest that NKAα1 may be a potential regulator of cardiac fibrosis, and that its DR-region represents a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL40363 | DOI Listing |
Physiology (Bethesda)
September 2025
Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.
Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.
View Article and Find Full Text PDFMol Cell Biochem
September 2025
Peking University Third Hospital, Beijing, China.
Cardiovascular-Kidney-Metabolic (CKM) syndrome, a newly defined systemic disorder, is characterized by the pathological interplay among diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD). Recent studies have identified chronic inflammation not only as a central mediator in the pathological progression of CKM syndrome but also as a pivotal molecular hub that drives coordinated damage across multiple organ systems. Mechanistic investigations have revealed that aberrant activation of signaling pathways such as NF-κB, Wnt, PI3K-AKT, JAK-STAT, and PPAR constitutes a complex inflammatory regulatory network.
View Article and Find Full Text PDFClin Kidney J
September 2025
Department of Nephrology. University Clinical Hospital, INCLIVA, Valencia. RICORS Renal Instituto de salud Carlos III, Valencia. Spain.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department M3/Internal Medicine VI, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania.
Background: Epicardial adipose tissue (EAT) is an indicator of high cardiovascular and metabolic risk. This study aimed to investigate the association between EAT thickness (EATT) and liver fibrosis and steatosis in patients with type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD).
Methods: Patients with T2DM and MASLD underwent a complex evaluation, which included clinical, laboratory, and liver and transthoracic cardiac ultrasound assessments.
Br J Pharmacol
September 2025
Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Background And Purpose: Myocardial infarction (MI) is accompanied by acute release of numerous inflammatory factors, leading to fibrosis and ultimately cardiac dysfunction. Daucosterol (DAU), a natural sterol compound, has been demonstrated to have anti-inflammatory properties and the ability to mitigate liver fibrosis. This study aims to investigate the therapeutic potential of DAU in MI and explores the underlying mechanisms.
View Article and Find Full Text PDF