Super-twisting adaptive control of a quadrotor.

ISA Trans

Automatic Institute (INAUT), National University of San Juan, CONICET. Avda. Libertador San Martín (Oeste) 1109, CP 5400, San Juan, Argentina. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper proposes a novel methodology for the design of robust and adaptive controllers tailored to unmanned aerial vehicles (UAVs). The proposed control architecture integrates a Super-Twisting Sliding Mode Controller (ST-SMC) with an adaptive law to ensure high-performance trajectory tracking under model uncertainties and external disturbances. The ST-SMC effectively mitigates the chattering phenomenon, a common issue in sliding mode control schemes, while maintaining robustness to system nonlinearities. The adaptive component dynamically updates the control parameters in real time to compensate for unmodeled dynamics and parameter variations. The combined approach synergistically improves tracking accuracy and overall system stability. A rigorous stability analysis based on Lyapunov theory guarantees the convergence and boundedness of the control errors. The effectiveness of the proposed method is validated through experimental laboratory flights in a sensor-enhanced environment. The results demonstrate that the two control schemes complement each other, achieving a robust strategy with high performance in the presence of parametric uncertainties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2025.07.029DOI Listing

Publication Analysis

Top Keywords

sliding mode
8
control schemes
8
control
6
super-twisting adaptive
4
adaptive control
4
control quadrotor
4
quadrotor paper
4
paper proposes
4
proposes novel
4
novel methodology
4

Similar Publications

A novel practical predefined-time sliding mode control strategy is proposed for the flight formation of a small tandem-rotor wheeled UAV (TRW-UAV) with unknown upper bound external disturbances and uncertainties in this paper. Firstly, a new predefined-time sliding mode surface is proposed to guide all errors of the position and velocity loops to converge to the origin in a predefined-time. Furthermore, a dynamic surface control approach is utilized to circumvent the higher-order differentiation when controlling the actuator loop.

View Article and Find Full Text PDF

The evaporation of surfactant-laden sessile droplets has widespread applications in both natural and technological contexts. This study explores the evaporation of droplets containing a nonionic surfactant (tristyrylphenol ethoxylates (EOT)), an anionic surfactant (sodium benzenesulfonate with alkyl chain lengths of C-C (NaDDBS)), and their mixtures at / mole ratios of 0.01, 0.

View Article and Find Full Text PDF

This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions-weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions.

View Article and Find Full Text PDF

Deep learning (DL) has significantly improved the diagnostic accuracy and efficiency of cytopathologists. However, current DL-assisted reading modes have yet to be fully evaluated, and there is limited evidence regarding cytopathologists' preferences and experiences. This study employs a randomized, controlled, four-way crossover design to assess the effectiveness of four different reading modes in cervical cytopathology readings.

View Article and Find Full Text PDF

In this study, the problem of trajectory tracking optimal control of robotic manipulator system subjected to external load disturbances is investigated, and an observer-based discrete fast terminal sliding mode predictive optimal control (FTSMPC) strategy is presented. Firstly, to address the unknown friction torque and load disturbances, a novel discrete-time extended state observer is designed to estimate the lumped disturbances, in which the boundedness of the observation error can be guaranteed through theoretical analysis. Then, with the outputs of the observer, an FTSMPC control approach is designed.

View Article and Find Full Text PDF