Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sepsis is a life-threatening condition with limited therapeutic options. Emerging evidence implicates gut microbial metabolites in modulating host immunity, but the specific interactions between these metabolites and host druggable targets remain poorly understood.

Methods: We utilized a systems biology framework integrating genetic analyses, multi-omics profiling, and structure-based virtual screening to systematically map the interaction landscape between human gut microbial metabolites and druggable G-protein-coupled receptors (GPCRs), ion channels (ICs), and kinases (termed the "GIKome") in sepsis. Key findings were validated by molecular dynamics (MD) simulation, microscale thermophoresis (MST), and functional assays in a murine cecal ligation and puncture (CLP) model of sepsis.

Results: We evaluated 190,950 metabolite-protein interactions, linking 114 sepsis-related GIK targets to 335 gut microbial metabolites, and prioritized indole-3-lactic acid (ILA), a metabolite enriched in , as a promising therapeutic candidate. MD simulation and MST further revealed that ILA binds stably to PFKFB2, a pivotal kinase in regulating glycolytic flux and immune activation during sepsis. , ILA administration improved survival, attenuated cytokine storm, and mitigated multi-organ injury in CLP-induced septic mice.

Conclusions: This systems-level investigation unveils previously unrecognized therapeutic targets, offering a blueprint for microbiota-based precision interventions in critical care medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318984PMC
http://dx.doi.org/10.3389/fimmu.2025.1597676DOI Listing

Publication Analysis

Top Keywords

gut microbial
16
microbial metabolites
16
metabolites druggable
8
metabolites
5
comprehensive characterization
4
characterization multi-omics
4
multi-omics landscapes
4
gut
4
landscapes gut
4
microbial
4

Similar Publications

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

Background: The gut microbiota produces numerous metabolites that can enter the circulation and exert effects outside the gut. Several studies have reported altered gut microbiota composition and circulating metabolites in patients with chronic heart failure (HF) compared to healthy controls. Limited data is available on the interplay between dysbiotic features of the gut microbiota and altered circulating metabolites in HF patients.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

16S rRNA metagenome analysis of gut bacteriome of Rohu () from Halda River and Kaptai Lake, Bangladesh.

Microbiol Resour Announc

September 2025

Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh.

This research evaluated the gut microbiota of Rohu fish from the Halda River and Kaptai Lake in Bangladesh by 16S rRNA sequencing. Distinct microbial profiles were identified, with Halda samples concentrated in pathogens and Kaptai samples abundant in probiotics.

View Article and Find Full Text PDF

Rifaximin reduces gut-derived inflammation in severe acute pancreatitis: an experimental animal model and randomized controlled trial.

Microbiol Spectr

September 2025

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Unlabelled: Severe acute pancreatitis (SAP) is characterized by systemic inflammation and intestinal barrier dysfunction and is often associated with gut microbiota dysbiosis. Rifaximin, a gut-specific non-absorbable antibiotic, is known to modulate the gut microbiota. Here, we investigated rifaximin's effects and mechanisms in SAP using murine models and a single-center, open-label, randomized controlled trial (Chinese Clinical Trial Registry: ChiCTR2100049794).

View Article and Find Full Text PDF