Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With the growing demand for nitrogen-containing sustainable fuels and propellants, accurately predicting their thermochemical properties has become increasingly important. While quantum chemical calculation (QC) methods and calorimetric experiments offer high precision, they are often time-consuming and computationally intensive. In contrast, the group additivity (GA) method provides a faster alternative. However, its accuracy typically declines for complex nitrogen-containing compounds. In this study, we calculated the thermochemical properties of 283 nitrogen-containing species using ab initio composite methods (G3, G4, CBS-APNO, CBS-QB3). The QC results were used to optimize 43 existing GA groups and to develop 32 new groups for nitrogen-containing structures. Compared to Active Thermochemical Tables (ATcT), the QC methods achieved a 95% confidence interval (CI) of ±1.173 kcal/mol for Δ°. The optimized GA model (without the newly developed groups) achieved CIs of ±1.645 kcal/mol for Δ° and ±4.222 cal/(mol·K) for entropy, with specific heat capacity () uncertainties ranging from ±1.144 to ±1.441 cal/(mol·K) over 300-1000 K. After adding the newly developed groups, the GA model improved, yielding CIs of ±1.894 kcal/mol for Δ° and ±3.221 cal/(mol·K) for entropy. This work demonstrates an efficient framework for enhancing GA-based thermochemistry predictions using quantum data. This study's results could enable more accurate combustion modeling, better control of nitrogen oxide emissions, and the design of advanced nitrogen-containing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5c01264 | DOI Listing |