Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Citrulline (CITR) is a strong osmolyte and hydroxyl radical scavenger. However, no previous study has reported the ameliorative role of CITR under salinity stress. We found a significant decrease in growth, chlorophyll content, SPAD value, photosynthesis, leaf relative water content, and nutrient acquisition in sunflower plants exposed to salinity (15 dS m). Salinity caused substantial oxidative damage through elevating the levels of superoxide radicals (O ), hydrogen peroxide (HO), hydroxyl radicals (·OH), leaf relative membrane permeability, malondialdehyde (MDA) and activity of lipoxygenase (LOX). Plants subjected to salinity manifested a higher buildup of methylglyoxal (MG), further exacerbating the cellular damage. However, CITR seed priming (1, 2, and 3 mM) partially relieved the negative repercussions of salinity by promoting the activities of antioxidant enzymes and levels of non-enzymatic antioxidants. Consequently, plants raised from CITR-primed seeds suffered less from oxidative damage and exhibited lower generation of O·, HO, ·OH, MG, MDA, and activity of LOX. Plants under CITR supplementation exhibited higher chlorophyll content and improved efficiency of photosystem II as evidenced by higher values of maximum efficiency of photosystem-II (Fv/Fm), fraction of open PSII centers (qL), and photochemical quenching coefficient (qP). Citrulline priming enhanced plant resilience under salinity by improving hormonal balance, promoting polyamine accumulation, and sustaining photosynthetic performance. CITR bettered osmotic regulation through increased accumulation of osmolytes such as proline, glycine betaine, and total soluble sugars. Citrulline improved nutrient acquisition and diminished excess Na buildup, preventing specific ion toxicity and osmotic stress.

Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-025-01626-x.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314138PMC
http://dx.doi.org/10.1007/s12298-025-01626-xDOI Listing

Publication Analysis

Top Keywords

chlorophyll content
8
leaf relative
8
nutrient acquisition
8
oxidative damage
8
mda activity
8
lox plants
8
salinity
7
citr
5
citrulline
4
citrulline enhances
4

Similar Publications

Physiology combined with metabolomics reveal selenium acting as a mitigator for Perilla frutescens (L.) Britt. growth under oxytetracycline condition: by regulating photosynthesis, redox homeostasis and secondary metabolites.

Plant Physiol Biochem

September 2025

School of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China. Electronic address:

The accumulation of antibiotics in soil threatens agricultural ecosystems and human health. Oxytetracycline (OTC), a plant-absorbable antibiotic, generally exerts inhibitory effects on plant growth. Selenium (Se) plays a crucial role in safeguarding plants resistant to a variety of abiotic stresses.

View Article and Find Full Text PDF

Autotoxicity in Cucumis melo L. and its alleviation by exogenous silicon: Physiological and biochemical mechanisms.

Plant Physiol Biochem

September 2025

Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.

Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.

View Article and Find Full Text PDF

Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.

View Article and Find Full Text PDF

Dual pathways of photosynthetic inhibition by nanoplastics: Light reaction blockade in soybean and carbon fixation enzyme suppression in corn.

Plant Physiol Biochem

September 2025

Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye

Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.

View Article and Find Full Text PDF

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF