98%
921
2 minutes
20
Patients with diabetes have a higher morbidity in Parkinson's disease (PD) than others, but the mechanism underlying this link remains controversial. The co-aggregation of α-synuclein (α-syn) and amylin has been hypothesized as a key contributor. Molecular interaction analysis and co-immunoprecipitation were conducted to assess the feasibility of co-aggregation. We developed a tailored surface-based fluorescence distribution method to detect the co-aggregate in the subject's serum sample and brain-derived L1CAM-positive Extracellular Vesicles. Subjects include Health Controls (HC), PD patients and multiple system atrophy (MSA) patients. The co-aggregates were detected in PD patient samples, in both serum and brain-derived extracellular vesicles (EVs). We demonstrated that the co-aggregate count could distinguish PD patients from healthy individuals. Our results revealed a positive correlation between co-aggregate count and Parkinson's disease scales or diabetes markers, highlighting the role of co-aggregation in promoting PD progression. The distribution of co-aggregates demonstrated diversity among different α-synucleinopathies; a high co-aggregates count was found in EVs and serum of PD patients, but not in the serum of MSA patients. The existence of α-syn-amylin co-aggregates was confirmed. Our findings suggest that α-syn-amylin co-aggregation may play a pivotal role in PD pathology, and have the potential as a biomarker. These results point to a potential path for early-diagnosis and therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315819 | PMC |
http://dx.doi.org/10.7150/thno.112396 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433, China.
Emerging evidence indicates that liquid-liquid phase separation of α-synuclein occurs during the nucleation step of its aggregation, a pivotal step in the onset of Parkinson's disease. Elucidating the molecular determinants governing this process is essential for understanding the pathological mechanisms of diseases and developing therapeutic strategies that target early-stage aggregation. While previous studies have identified residues critical for α-synuclein amyloid formation, the key residues and molecular drivers of its phase separation remain largely unexplored.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
Background: Early identification of pathological α-synuclein deposition (αSynD) may improve understanding of Lewy body disorder (LBD) progression and enable timely disease-modifying treatments.
Objectives: We investigated αSynD using a seed amplification assay and assessed prodromal LBD symptoms in individuals with idiopathic olfactory dysfunction (iOD).
Methods: In this cross-sectional, case-control study, we included iOD participants and normosmic healthy controls (HC) aged 55 to 75 years without diagnoses of dementia with Lewy bodies, Parkinson's disease (PD), or other major neurological disorders.
Parkinson's disease (PD) is the fastest-growing neurodegenerative disease in the world and appears to be an emerging epidemic in Africa, where counteractive measures have become necessary. Previous reports have highlighted the limited epidemiological and clinical PD research in Africa but overlooked the poor preclinical PD research output of the continent. Because preclinical research is a bedrock for translating basic scientific research into clinical practice, a weak preclinical research foundation can hamper advancement in epidemiological and clinical investigations.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of Neurology, Parkinson's Disease and Movement Disorders Center, Northwestern University, Chicago, Illinois, USA.
Crit Rev Anal Chem
September 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment.
View Article and Find Full Text PDF