98%
921
2 minutes
20
The molecular mechanisms underlying differences in somatic cell cloning efficiency among buffalo fetal fibroblasts (BFFs) from different individuals remain poorly understood. Our study conducted a comparative analysis of mitochondrial function and chromatin remodeling capacity of BFFs from different individuals, and tracked the mitochondria in the embryos derived from SCNT and IVF. These findings revealed that BFFs with high cloning efficiency displayed well-preserved mitochondrial morphology and ultrastructure, increased mitochondrial DNA copy number and ATP levels, elevated antioxidant capacity, enhanced mitochondrial membrane potential, and significantly upregulated expression levels of mitochondria-related genes. Meanwhile, BFFs with high cloning efficiency demonstrated significantly higher DNA enrichment, lower heterochromatin levels, and differential expression levels of chromatin remodeling-related genes. Furthermore, the persistence of donor cell mitochondria during cloned embryo development was observed, whereas sperm-derived mitochondria during IVF embryo development were rarely detectable. Collectively, our results suggest a tight connection between the mitochondria and chromatin remodeling of donor cells, and demonstrating their synergistic impact on cloning efficiency, providing the crucial experimental evidence for nucleo-mitochondrial interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2025.117602 | DOI Listing |
Front Vet Sci
August 2025
Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China.
Kunjin virus (KUNV), a naturally attenuated strain of West Nile virus (WNV), shares similar transmission modes and hosts-primarily mosquitoes, birds, and horses. Globally, reverse genetics is the principal methodology for characterizing the molecular etiology of flaviviruses. In this study, cytomegalovirus (CMV) promoter-driven KUNV reporter replicons were engineered to incorporate three distinct reporter genes: Nanoluc, oxGFP, and mCherry.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
Primordial germ cells (PGCs) are the progenitor cells of sperm and eggs. Xenotransplantation of chicken PGCs can achieve germline transmission. However, there are still challenges in obtaining many PGCs from endangered birds in vitro.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).
View Article and Find Full Text PDFReprod Domest Anim
September 2025
National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.
View Article and Find Full Text PDF