98%
921
2 minutes
20
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to maintain telomere length. Targeting the ALT is of growing interest as a cancer therapy, yet a substantial knowledge gap remains regarding the basic features of telomeres in ALT-positive cells. To address this, we adopted END-seq, an unbiased sequencing-based approach, to define the identity and regulation of the terminal sequences of chromosomes in ALT cells. Our data reveal that the terminal portions of chromosomes in ALT cells contain canonical telomeric sequences with the same terminus bias (-ATC) observed in non-ALT cells. Furthermore, as reported for non-ALT cells, POT1 is required to preserve the precise regulation of the 5' end in cells that maintain telomere length using the ALT pathway. Thus, the regulation of the terminal 5' of chromosomes occurs independently of the mechanism of telomere elongation. Additionally, we employed an S1 endonuclease-based sequencing method to determine the presence and origin of single-stranded regions within ALT telomeres. These data shed light on conserved and unique features of ALT telomeres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316455 | PMC |
http://dx.doi.org/10.7554/eLife.106657 | DOI Listing |
Phys Rev Lett
August 2025
University of Sheffield, School of Mathematics and Statistics, Hounsfield Road, Sheffield S3 7RH, United Kingdom.
In a broad class of cosmological models where spacetime is described by a pseudo-Riemannian manifold, photons propagate along null geodesics, and their number is conserved, upcoming gravitational wave (GW) observations can be combined with measurements of the baryon acoustic oscillation (BAO) angular scale to provide model-independent estimates of the sound horizon at the baryon drag epoch. By focusing on the accuracy expected from forthcoming surveys such as the Laser Interferometer Space Antenna GW standard sirens and dark energy spectroscopic instrument (DESI) or Euclid angular BAO measurements, we forecast a relative precision of σ_{r_{d}}/r_{d}∼1.5% within the redshift range z≲1.
View Article and Find Full Text PDFmBio
September 2025
School of Biological Sciences, University of Auckland, Auckland, New Zealand.
The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs.
View Article and Find Full Text PDFMycobiology
September 2025
Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea.
The genus Hill ex Schrank is an ecologically significant group of wood-decaying fungi that contribute to nutrient cycling and ecosystem stability in forests worldwide. Despite a recent global increase in the descriptions of new species, Korean species have rarely been reexamined using modern taxonomic frameworks. In this study, dried specimens preserved at the Korea National Arboretum were re-identified through integrative morphological and molecular analyses using four genetic markers (ITS, ACT, TUB2, and RPB2).
View Article and Find Full Text PDFNat Commun
September 2025
Plant Ecology, University of Bayreuth, Bayreuth, Germany.
The unique biodiversity and vast carbon stocks of the Amazon rainforests are essential to the Earth System but are threatened by future water balance changes. Empirical evidence suggests that species and trait diversity may mediate forest drought responses, yet little evidence exists for tropical forest responses. In this simulation study, we identify key axes of trait variation and quantify the extent to which functional trait diversity increases tropical forests' drought resistance.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address:
The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.
View Article and Find Full Text PDF