Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Quantitative lung imaging is utilized to understand, characterize, and monitor lung disease and response to interventions. X-ray computed tomography has remained the modality of choice for clinical lung assessment, and photon counting detector-computed tomography (PCD-CT) is the latest advancement. PCD-CT provides increased spatial and contrast resolution, decreased image noise and artifacts (such as beam hardening) and, thus, a potential for enhanced image quality for equivalent or reduced radiation dose levels. However, evaluation of the ultra-high resolution capabilities of PCD-CT for quantitative lung imaging has not yet been systematically investigated.

Purpose: This study aims to evaluate 2 ultra-high resolution acquisition modes and 4 reconstruction kernels for optimal quantitative chest imaging at high radiation dose (9 mGy). We assess the stability of measurements across different scan modes and reconstruction kernels when the radiation dose level is reduced.

Methods: A customized anthropomorphic chest phantom, containing standardized insert materials, including air, water, various density foam inserts, and a modulation transfer function (MTF) cube, was repeatedly scanned with PCD-CT (NAEOTOM Alpha; Siemens Healthineers). Two ultra-high resolution acquisition modes, quantum plus (UHRQ+) and quantum with tin filtering (UHRQSn), and 4 reconstruction kernels (Br64, Bl60, Qr60, and Qr40, all with iterative reconstruction level 3) were examined with acquisitions at 3 radiation dose levels (9.1 mGy, 6.8 mGy, and 3.2 mGy). Quantitative density measures, airway measurements, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and MTF values were compared, along with the percentage change in measurement values from high to low radiation dose levels.

Results: At the highest radiation dose levels, UHRQ+ acquisition resulted in lower density values with higher SD compared with UHRQSn. UHRQ+ mode demonstrated higher CNR, SNR, and MTF values. Only UHRQ+ with Qr40 reconstruction provided accurate air measurements, both inside and outside the phantom, across all radiation dose levels. Quantitative density measurements remained highly stable (<2% change) as the radiation dose was reduced from 9.1 to 3.2 mGy. Airway wall thickness, diameter, and lumen area measurements were all larger with UHRQ+ acquisition compared with UHRQSn for the high radiation dose level. At low radiation dose levels, the UHRQ+ acquisition with Br64 reconstruction maintained the highest consistency in airway metrics compared with the values from the high dose acquisition, with <5% measurement percentage change.

Conclusion: The UHRQ+ mode is recommended for quantitative lung assessment, leveraging the PCD-CT voxel size potential (1024×1024 in plane matrix with 0.2 mm slice thickness). The choice of reconstruction kernel at ultra-high resolution should be task-specific, with Qr40 being optimal for density assessment due to its accuracy in air measurement across regions and Br64 for airway assessment. The high consistency of measurements across the radiation dose levels for these kernels (<5% measurement change from 9 mGy measurements) suggests that acquisition at 3 mGy is sufficient for quantitative analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000001227DOI Listing

Publication Analysis

Top Keywords

radiation dose
28
ultra-high resolution
16
dose levels
16
quantitative lung
12
reconstruction kernels
12
photon counting
8
computed tomography
8
lung assessment
8
lung imaging
8
resolution acquisition
8

Similar Publications

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Targeted intraoperative radiotherapy (IORT) delivers a single dose of radiation to a fresh tumour bed immediately after lumpectomy, commonly used to treat early breast cancer (EBC). It is delivered during the same sitting, with improved patient compliance and better sparing of adjacent healthy tissue, compared to conventional adjuvant radiotherapy to the whole breast. The recently published 12-year results (median follow up of 8.

View Article and Find Full Text PDF

Sodium orthovanadate (vanadate), a potent inhibitor of p53, has been shown in earlier work to alleviate total-body irradiation (TBI)-induced hematopoietic syndrome. However, as p53 plays a crucial role in normal spermatogenesis, its suppression may raise concerns about potential adverse effects on male reproductive function. In this study, we investigated whether vanadate exacerbates impairment of male fertility when administered for hematopoietic protection under TBI conditions.

View Article and Find Full Text PDF

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Background: Percutaneous transthoracic lung biopsy (PTNB) guided by Computed Tomography (CT) greatly depends on the operators' skill for accuracy. This study aimed to evaluate whether three-dimensionally(3D) printed navigational templates for percutaneous transthoracic lung biopsy achieve diagnostic yield comparable to conventional computed tomography guidance.

Materials And Methods: Conducted from 1 November 2020, to 27 July 2023, this noninferiority randomized clinical trial included 159 patients with peripheral lung masses (≥30 mm).

View Article and Find Full Text PDF