Expression, immunogenicity and clinical significance analysis of thyroid‑stimulating hormone receptor fusion proteins.

Mol Med Rep

Department of Endocrinology and Metabolism, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thyroid function is regulated in a substantial manner by thyroid‑stimulating hormone receptor (TSHR), and aberrant alterations in thyroid function are triggered by the interaction of TSHR with its antibodies, thyroid‑stimulating hormone receptor antibodies (TRAb). The expression, immunogenicity and clinical significance of fusion proteins comprising different structural domains of TSHR were investigated. Fusion proteins containing several human TSHR (hTSHR) structural domains were created. experiments utilized these fusion proteins as antigens to specifically bind and analyze patient sera using an ELISA. To investigate the immunogenicity and clinical significance of various structural domains of TSHR, experiments included immunizing BALB/c mice with various fusion proteins of hTSHR, measuring serum autoantibodies, assessing thyroid function, performing histological examination and using flow cytometry to identify changes in T cell subsets. Three distinct hTSHR fusion protein fragments (hTSHR289, hTSHR290 and hTSHR410) were synthesized. The hTSHR290 fusion protein demonstrated the highest binding reaction with TRAb sera from patients with hypothyroidism, and the hTSHR289 fusion protein demonstrated considerable specific binding reactivity with stimulating antibodies, as observed in sera from patients with hyperthyroidism. Pathological alterations associated with hyperthyroidism were observed in mice in the hTSHR289 fusion protein group, while pathological changes associated with hypothyroidism were observed in mice in the hTSHR290 fusion protein group. Immunized BALB/c mice exhibited increased levels of CD4 T cell subsets, and decreased levels of CD8CD122 and CD4CD25 T cell subsets. Fusion proteins of different structural domains of TSHR exhibited varying immunogenicity. The hTSHR289 fusion protein and hTSHR290 fusion protein prepared in the present study could serve as a basis for the development of ELISA kits for the detection of thyroid‑stimulating immunoglobulins and TSHR‑blocking antibodies. Fusion proteins of different structural domains of TSHR induced clinical symptoms of hyperthyroidism and hypothyroidism in mice. The present study provides a scientific basis for future studies on the etiology and mechanisms of autoimmune thyroid diseases, as well as the invention of novel methods for TRAb detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329642PMC
http://dx.doi.org/10.3892/mmr.2025.13639DOI Listing

Publication Analysis

Top Keywords

fusion proteins
28
fusion protein
28
structural domains
20
domains tshr
16
fusion
14
immunogenicity clinical
12
clinical significance
12
thyroid‑stimulating hormone
12
hormone receptor
12
thyroid function
12

Similar Publications

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF

The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major pathogen causing acute respiratory infections, and the RSV fusion glycoprotein (F) has been identified as a key target for developing small-molecule inhibitors. Based on our prior identification of lonafarnib as an F protein inhibitor, medicinal chemistry efforts led to the development of , which exhibits significantly enhanced potency against both laboratory and clinical RSV isolates in cellular assays. Time-of-addition and SPR assays indicate that inhibits viral entry by targeting the RSV F protein, but has farnesyltransferase-independent antiviral efficacy.

View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with an altered bone marrow microenvironment sheltering leukemic stem cells (LSCs). LSCs are characterized as self-renewing and highly proliferative cancer stem cells and accumulate abnormal genetic and epigenetic factors contributing to their uncontrolled proliferation. Chromosomal translocation t(9;11)(p22;q23) forms fusion oncoprotein, MLL-AF9, and regulates the transcription factor, C-Myb, which is highly expressed in AML.

View Article and Find Full Text PDF

A rapid imaging-based screen for induced-proximity degraders identifies a potent degrader of oncoprotein SKP2.

Nat Biotechnol

September 2025

Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.

Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.

View Article and Find Full Text PDF