Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing multi-drug resistance observed in the turfgrass pathogen spp. has emerged as a critical issue. Understanding the mechanisms underlying fungicide resistance is crucial to address this challenge. This study focuses on comparing a highly propiconazole-resistant isolate of , HRI11, with a sensitive isolate, HRS10. Genomes were sequenced using the Oxford Nanopore MinION sequencing platform, and hybrid assembly was performed using this data and existing Pacific Biosciences long reads and Illumina short reads. HRI11 genome assembly represents the most contiguous and complete genome assembly reported for to date, spanning 43.6 MB with 12,831 predicted protein-coding genes across 51 scaffolds. In contrast, the HRS10 had an assembly size of 39.6 MB and encoded 12,161 putative proteins distributed over 100 scaffolds. While the two isolates share substantial sequence similarity and overall protein content, the fungicide resistance observed in HRI11 appears to arise primarily from genetic variants, particularly in genes encoding transcription factors, transporters, and fungicide target genes. These genetic variants establish a foundational resistance level against fungicides. Furthermore, induced resistance in HRI11 involves increased expression of proteins that facilitate fungicide efflux, thereby optimizing energy allocation during fungicide exposures. Together, these mechanisms-inherent genetic variation and adaptive transcriptional responses-contribute to the heightened resilience of HRI11 under fungicide treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310695PMC
http://dx.doi.org/10.3389/ffunb.2025.1621663DOI Listing

Publication Analysis

Top Keywords

hybrid assembly
8
resistance observed
8
fungicide resistance
8
genome assembly
8
genetic variants
8
resistance
6
fungicide
6
assembly
5
hri11
5
nanopore sequencing
4

Similar Publications

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF

Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.

View Article and Find Full Text PDF

Background: Aflatoxin B1 (AFB1) is a highly carcinogenic mycotoxin frequently found in contaminated food products, posing a significant threat to public health and food safety. Therefore, the development of rapid, sensitive, and reliable detection methods for AFB1 is critical for early warning and prevention. However, traditional detection techniques often require expensive equipment, skilled personnel, and complex procedures, limiting their suitability for on-site applications.

View Article and Find Full Text PDF

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF

Genetic architecture of the S-locus supergene revealed in a tetraploid distylous species.

New Phytol

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops/Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Heterostyly is a polymorphic floral adaptation controlled by supergenes. The molecular basis of distyly has been investigated in diploid species from several unrelated families, but information is lacking for polyploid systems. Here, we address this knowledge gap in Schizomussaenda henryi, a tetraploid distylous species of Rubiaceae, the family with the greatest number of heterostylous species.

View Article and Find Full Text PDF