Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to explore Deep Learning methods, namely Large Language Models (LLMs) and Computer Vision models to accurately predict neoadjuvant rectal (NAR) score for locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiation (NACRT). The NAR score is a validated surrogate endpoint for LARC. 160 CT scans of patients were used in this study, along with 4 different types of radiology reports, 2 generated from CT scans and other 2 from MRI scans, both before and after NACRT. For CT scans, two different approaches with convolutional neural network were utilized to tackle the 3D scan entirely or tackle it slice by slice. For radiology reports, an encoder architecture LLM was used. The performance of the approaches was quantified by the Area under the Receiver Operating Characteristic curve (AUC). The two different approaches for CT scans yielded [Formula: see text] and [Formula: see text] while the LLM trained on post NACRT MRI reports showed the most predictive potential at [Formula: see text] and a statistical improvement, p = 0.03, over the baseline clinical approach (from [Formula: see text] to [Formula: see text])). This study showcases the potential of Large Language Models and the inadequacies of CT scans in predicting NAR values. Clinical trial number Not applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312340PMC
http://dx.doi.org/10.1186/s12880-025-01844-5DOI Listing

Publication Analysis

Top Keywords

[formula text]
20
large language
12
language models
12
deep learning
8
neoadjuvant rectal
8
rectal cancer
8
treated neoadjuvant
8
neoadjuvant chemoradiation
8
nar score
8
radiology reports
8

Similar Publications

Notoginsenoside R1 (NGR1), a natural triterpenoid saponin, is extracted from , and has cardiovascular and cerebrovascular protective effects due to anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Previous research has suggested a protective role for NGR1 in myocardial ischemia/reperfusion (MI/R) injury. However, the potential mechanisms involved have not been fully elucidated.

View Article and Find Full Text PDF

Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.

View Article and Find Full Text PDF

This study introduces the Wrapped Epanechnikov Exponential Distribution (WEED), a novel circular distribution derived from the Epanechnikov exponential distribution. The probability density function and cumulative distribution function are presented, together with a comprehensive analysis of its properties and parameters, including the characteristic function and trigonometric moments. Parameters are estimated using maximum likelihood estimation (MLE).

View Article and Find Full Text PDF

Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.

View Article and Find Full Text PDF

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF