98%
921
2 minutes
20
Background: Diagnosis of prostate cancer requires histopathology of tissue samples. Following an MRI to identify suspicious areas, a biopsy is performed under ultrasound (US) guidance. In existing assistance systems, 3D US information is generally available (taken before the biopsy session and/or in between samplings). However, without registration between 2D images and 3D volumes, the urologist must rely on cognitive navigation.
Methods: This work introduces a deep learning model to track the orientation of real-time US slices relative to a reference 3D US volume using only image and volume data. The dataset comprises 515 3D US volumes collected from 51 patients during routine transperineal biopsy. To generate 2D images streams, volumes are resampled to simulate three degrees of freedom rotational movements around the rectal entrance. The proposed model comprises two ResNet-based sub-modules to address the symmetry ambiguity arising from complex out-of-plane movement of the probe. The first sub-module predicts the unsigned relative orientation between consecutive slices, while the second leverages a custom similarity model and a spatial context volume to determine the sign of this relative orientation. From the sub-modules predictions, slices orientations along the navigated trajectory can then be derived in real-time.
Results: Results demonstrate that registration error remains below 2.5 mm in 92% of cases over a 5-second trajectory, and 80% over a 25-second trajectory.
Conclusion: These findings show that accurate, sensorless 2D/3D US registration given a spatial context is achievable with limited drift over extended navigation. This highlights the potential of AI-driven biopsy assistance to increase the accuracy of freehand biopsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2025.110777 | DOI Listing |
ACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDFJ Pathol Inform
November 2025
Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial-stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Västerbotten County, Sweden.
Pharmaceutical contaminants reaching natural aquatic ecosystems can affect fish behaviour, modifying activity patterns, foraging behaviour and antipredator responses. While laboratory-based studies can offer key insights, assessing the ecological relevance of these findings requires field-based approaches. Therefore, we examined the effects of oxazepam, a widely prescribed anxiolytic drug, on the behaviour of a cyprinid fish (the common roach, ) in the wild, combining slow-release exposure implants with continuous tracking via acoustic telemetry.
View Article and Find Full Text PDFCell Syst
September 2025
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets.
View Article and Find Full Text PDF