Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteosarcoma (OS) is highly malignant and easily prone to lung metastasis. The mechanisms of lung metastasis in OS remain unclear. The single-cell RNA sequencing (scRNA-seq) samples in this study included six primary osteosarcoma samples (published in-house data), two lung metastasis samples (GSE152048), and four normal bone tissue samples (GSE169396). To identify potential targets for metastasis, bulk RNA sequencing data from four primary tumors and four lung metastases (in-house data) were also analyzed. scRNA-seq identified five tumor cell subpopulations. CytoTRACE and lung metastasis scores indicated that the C1 subpopulation was most closely associated with lung metastasis. By intersecting lung metastasis-related genes identified via hdWGCNA analysis with differentially expressed genes from bulk RNA sequencing, was identified as the key gene influencing lung metastasis. qRT-PCR results revealed that expression was significantly downregulated in OS cell lines. Transwell assay demonstrated that overexpression of significantly inhibited the invasion and migration capabilities of OS cells. Additionally, analyses using Scissor, CellphoneDB, and CSOmap suggested that fibroblasts, endothelial cells, and OS cells in the tumor microenvironment formed a pre-metastatic niche through mechanisms involving angiogenesis and extracellular matrix remodeling. Overall, this study identifies a new population that may promote lung metastasis by downregulating in OS. Moreover, fibroblasts and endothelial cells in the tumor microenvironment play a critical role in OS lung metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301935PMC
http://dx.doi.org/10.1096/fba.2024-00161DOI Listing

Publication Analysis

Top Keywords

lung metastasis
36
rna sequencing
16
lung
11
metastasis
10
single-cell rna
8
critical role
8
in-house data
8
bulk rna
8
fibroblasts endothelial
8
endothelial cells
8

Similar Publications

Lung cancer, particularly non-small cell lung cancer, is a leading cause of global mortality, with many cases diagnosed at advanced stages. The Toll-Like Receptor (TLR) signaling pathway plays a crucial role in linking inflammation to lung cancer progression, with both pro-tumor and anti-tumor effects. This perspective delves into the complex functions of TLR proteins in lung cancers, elucidating their involvement in tumor growth, angiogenesis, and metastasis.

View Article and Find Full Text PDF

Lipidomic Profiling in Cancer: Phospholipid Alterations and their Role in Tumor Progression.

Curr Cancer Drug Targets

September 2025

Department of Biotechnology, Institute of Applied Sciences &Humanities, GLA University, 17km Stone, NH-19, Mathura, Delhi Road, P.O. Chaumuhan, Mathura, 281 406, U.P. India.

Phospholipids play a crucial role in various aspects of cancer biology, including tumor progression, metastasis, and cell survival. Recent studies have highlighted the signifi-cance of phospholipid metabolism and signaling in multiple cancer types, such as breast, cer-vical, prostate, bladder, colorectal, liver, lung, melanoma, mesothelioma, and oral cancer. Al-terations in phospholipid profiles, particularly in phosphatidylcholine and phosphatidylethan-olamine, have been identified as potential biomarkers for cancer diagnosis and prognosis.

View Article and Find Full Text PDF

Purpose: We investigated whether EML4-ALK fusions and mutations in pre-treatment plasma ctDNA predicted time to treatment discontinuation (TTD) in ALK-positive non-small cell lung cancer (ALK+ NSCLC) patients initiating first-line alectinib and evaluated clinical characteristics influencing TTD.

Materials & Methods: 42 patients from five Danish public oncology departments with previously untreated, metastatic ALK+ NSCLC were included in the study. All patients received alectinib, a second-generation ALK inhibitor, as their first-line treatment.

View Article and Find Full Text PDF

Blockade of metastasis by targeting circulating tumor cells with platelet encapsuled oncolytic adenovirus.

Biomaterials

September 2025

Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China. Electronic address:

Host immune elimination largely limits the application of oncolytic viruses in clinics. Here, we rationally design a bioactive platelet-based oncolytic adenovirus delivery system. Upon loading adenoviruses, platelets are transformed to a pro-endocytosis status, which facilitates their internalization by circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF