98%
921
2 minutes
20
Raman lasers based on diamond crystals, known for their high Raman gain and high power-handling capabilities, have garnered significant attention in recent years for their potential in high-power multi-wavelength laser applications. While extensive research has been conducted on gain competition among multiple wavelengths in the Raman cascade process, the impact of this competition on the pulse waveforms of different Stokes orders has received limited focus. In this work, we investigate how gain competition influences the pulse waveforms during cascaded conversion in a Raman oscillator. This study introduces what we believe to be a novel approach to generating short-pulse outputs in Raman lasers. Experimental results reveal that when the fourth-order Stokes pulse begins to oscillate, the third-order Stokes pulse exhibits pulse narrowing. Furthermore, both second-order and third-order Stokes pulses show "step-like" features in their waveforms due to losses from higher-order Stokes generation-a phenomenon corroborated by theoretical simulations. Using a 532 nm laser as the pump source to excite diamond, we successfully achieve second-order, third-order, and fourth-order Stokes cascaded Raman laser outputs at 620 nm, 676 nm, and 743 nm, respectively. The measured energy output reaches 632.4 μJ, with an optical-to-optical conversion efficiency of 36.38%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.554183 | DOI Listing |
Phys Rev Lett
August 2025
Universität Innsbruck, Institut für Experimentalphysik, Technikerstrasse 25, 6020 Innsbruck, Austria.
Establishing networks of quantum processors offers a path to scalable quantum computing and applications in communication and sensing. This requires first developing efficient interfaces between photons and multiqubit registers. In this Letter, we show how to entangle each individual matter qubit in a register of ten to a separate traveling photon.
View Article and Find Full Text PDFSmall
September 2025
Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia.
The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.
Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology.
We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density).
View Article and Find Full Text PDF