Leveraging Feature Fusion of Image Features and Laser Reflectance for Automated Fish Freshness Classification.

Sensors (Basel)

Department of Computer Engineering, Faculty of Engineering and Architecture, Bingöl University, Bingöl 12000, Türkiye.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fish is important for human health due to its high nutritional value. However, it is prone to spoilage due to its structural characteristics. Traditional freshness assessment methods, such as visual inspection, are subjective and prone to inconsistency. This study proposes a novel, cost-effective hybrid methodology for automated three-level fish freshness classification (Day 1, Day 2, Day 3) by integrating single-wavelength laser reflectance data with deep learning-based image features. A comprehensive dataset was created by collecting visual and laser data from 130 mackerel specimens over three consecutive days under controlled conditions. Image features were extracted using four pre-trained CNN architectures and fused with laser features to form a unified representation. The combined features were classified using SVM, MLP, and RF algorithms. The experimental results demonstrated that the proposed multimodal approach significantly outperformed single-modality methods, achieving average classification accuracy of 88.44%. This work presents an original contribution by demonstrating, for the first time, the effectiveness of combining low-cost laser sensing and deep visual features for freshness prediction, with potential for real-time mobile deployment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300243PMC
http://dx.doi.org/10.3390/s25144374DOI Listing

Publication Analysis

Top Keywords

image features
12
laser reflectance
8
fish freshness
8
freshness classification
8
day day
8
features
6
laser
5
leveraging feature
4
feature fusion
4
fusion image
4

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Clinicopathological features of dermal clear cell sarcoma: A series of 13 cases.

Pathol Res Pract

September 2025

Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:

Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.

View Article and Find Full Text PDF

Leveraging GPT-4o for Automated Extraction and Categorization of CAD-RADS Features From Free-Text Coronary CT Angiography Reports: Diagnostic Study.

JMIR Med Inform

September 2025

Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.

Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.

View Article and Find Full Text PDF