Chelerythrine Inhibits TGF-β-Induced Epithelial-Mesenchymal Transition in A549 Cells via RRM2.

Pharmaceuticals (Basel)

School of Pharmaceutical Sciences, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin 132013, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The aim of this study was to investigate the inhibitory effects and molecular mechanisms of CHE on transforming growth factor-beta (TGF-β)-induced epithelial-mesenchymal transition (EMT). : Wound healing and Transwell assays were employed to evaluate TGF-β-induced migration in A549 cells and the inhibitory effects of CHE. Ribonucleotide reductase subunit M2 (RRM2) expression levels were detected via Western blot and immunofluorescence staining. Western blot and RT-qPCR were used to examine the expression levels of EMT-related markers. Animal experiments were conducted to analyze the role of RRM2 in the CHE inhibition of TGF-β-induced lung cancer metastasis. : This study found that TGF-β treatment enhanced the metastasis of A549 cells, while CHE inhibited the expression of TGF-β-induced EMT-related transcription factors by RRM2, thereby suppressing tumor cell migration ( < 0.05). Furthermore, the oral administration of CHE inhibited the metastasis of A549 cells to the lungs from the tail vein in mice, consistent with in vitro findings. Despite the high doses of CHE used, there was no evidence of toxicity. : Our data reveal the mechanism of the anti-metastatic effects of CHE on TGF-β-induced EMT and indicate that CHE can be used as an effective anti-tumor treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298477PMC
http://dx.doi.org/10.3390/ph18071036DOI Listing

Publication Analysis

Top Keywords

a549 cells
16
che
9
tgf-β-induced epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
lung cancer
8
inhibitory effects
8
effects che
8
expression levels
8
western blot
8
metastasis a549
8

Similar Publications

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.

View Article and Find Full Text PDF

CRISPR technology offers an entirely new approach to therapeutic development because it can target specific nucleotide sequences with high specificity, however, preclinical animal models are not useful for evaluation of their efficacy and potential off-target effects because of high gene sequence variations between animals and humans. Here, we explored the potential of using the CRISPR effector Cas13 to develop a new therapeutic approach for influenza A virus (IAV) infections based on its ability to specifically and robustly cleave single-strand viral RNA using a complementary CRISPR RNA (crRNA). We engineered crRNAs to target highly conserved regions in the IAV genome to create a potential pan-viral treatment strategy.

View Article and Find Full Text PDF

Graphene oxide and its derivatives have unique physical and chemical properties with applications in many different fields. However, their biological effects and mechanisms of intracellular toxicity have not been completely clarified. In this study, we investigated the cytotoxic and autophagic activities of graphene oxide and its derivatives in A549 human lung carcinoma cells.

View Article and Find Full Text PDF

Cisplatin resistance significantly limits the efficacy of chemotherapy in non-small cell lung cancer, necessitating the development of new strategies to overcome this barrier. This in vitro study aimed to elucidate the mechanism by which β-Ele reverses cisplatin resistance in lung adenocarcinoma cells via the LINC00511-mediated glycolysis and Wnt/β-catenin signaling pathways. The cisplatin-resistant human lung adenocarcinoma cell line (A549/DDP), with either LINC00511 overexpression or knockdown, was established through plasmid transfection.

View Article and Find Full Text PDF