Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Self-assembled monolayer (SAM) materials have emerged as promising materials for interface engineering in perovskite solar cells. However, achieving an optimal balance between molecular packing density, charge transport efficiency, and defect passivation remains a challenge. In this work, we propose a SAM material design strategy that synergizes flexible head groups with rigid linking groups. Using (4-(diphenylamino)phenyl)phosphonic acid as a model molecule, Compared to traditional materials such as (4-(9H-carbazol-9-yl)phenyl)phosphonic acid and (4-(diphenylamino)phenethyl)phosphonic acid, our material generates a high-quality perovskite layer. This design achieves superior energy level alignment, improved hole extraction, and enhanced charge transport efficiency, effectively reducing non-radiative recombination. (4-(diphenylamino)phenyl)phosphonic acid-based device achieve power conversion efficiency of 26.21% and 24.49% for small- (0.0715 cm) and large-area (1 cm), respectively. This work establishes an effective approach to SAM molecular design, providing a clear pathway for improving both the efficiency and long-term stability of perovskite solar cells through interface engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307864PMC
http://dx.doi.org/10.1038/s41467-025-62388-4DOI Listing

Publication Analysis

Top Keywords

perovskite solar
12
solar cells
12
self-assembled monolayer
8
interface engineering
8
charge transport
8
transport efficiency
8
flexibility meets
4
meets rigidity
4
rigidity self-assembled
4
materials
4

Similar Publications

Silicon-Perovskite Tandem Solar Cells: An Alternative to the Market-Dominated Silicon-Based Solar Cell Technology.

ACS Appl Mater Interfaces

September 2025

Advanced Materials and Devices Metrology Division, CSIR-National Physical Laboratory, K.S. Krishnan Marg, Pusa Road, New Delhi 110012, India.

Among all types of tandem solar cells (TSCs), the two-terminal (2T) monolithic silicon-perovskite TSCs have achieved an efficiency of approximately 34.85% and show potential for commercialization because they align with well-established silicon-based solar cell technology. This review focuses on 2T monolithic silicon-perovskite TSCs, discussing their deployment along with related technical and scientific issues.

View Article and Find Full Text PDF

Recently, halide perovskite materials have attracted significant research interest in photoelectrochemical cells as promising photoabsorbers due to their superior optoelectronic properties. However, their instability under environmental conditions remains a major obstacle to the development of stable water-splitting devices. This review thoroughly examines the growing array of encapsulation strategies that have accelerated the integration of perovskite materials into water-splitting systems.

View Article and Find Full Text PDF

Levetiracetam-Assisted Perovskite Crystallization and Tripartite Lead Iodide Reduction in Perovskite Solar Cells.

Adv Mater

September 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.

View Article and Find Full Text PDF

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

Adv Mater

September 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are rapidly advancing due to their high power conversion efficiencies (PCEs) and low fabrication costs. However, their commercialization is hindered by lead toxicity and the use of expensive materials, such as Spiro-OMeTAD and gold electrodes. This study presents a comprehensive SCAPS-1D simulation-based analysis of 14 perovskite absorber materials, spanning both Pb-based and lead-free compounds, under a unified device architecture using low-cost, nontoxic components: ZnO as the electron transport material (ETM), PEDOT:PSS + WO as a dual hole transport material, and nickel as the back contact.

View Article and Find Full Text PDF