98%
921
2 minutes
20
During the early stages of seed development, the small embryo receives large amounts of sugar from the liquid endosperm of the developing seed. A sugar deficit can lead to severe seed abortion and yield loss. However, the key factors influencing sugar transport and crop yield remain largely unknown. In this work, we identified a plasma membrane-localized sugar transporter, GmSWEET48, that was highly expressed in developing soybean seeds. Heterologous expression showed that GmSWEET48 transported fructose and glucose in yeast systems and exhibited C-labeled sucrose influx and efflux activities in Xenopus oocytes. Overexpression of GmSWEET48 decreased the levels of sucrose and oil but increased protein levels in seeds and promoted seed yield. In conclusion, GmSWEET48 regulates sugar transport during early seed development and ultimately regulates seed yield and composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2025.154576 | DOI Listing |
J Exp Bot
September 2025
Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan (MI), Italy.
Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.
View Article and Find Full Text PDFJ Basic Microbiol
September 2025
Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India.
Cereal cyst nematode (Heterodera avenae) significantly hampers barley production by causing stunted growth and yield losses. This study explored the biocontrol potential of multitrait root endophytic bacteria isolated from H. avenae-infested barley roots to suppress nematode infestation.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Plant Health Institute of Montpellier, Montpellier, France.
pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Horticultural Science, Texas A&M University, College Station, Texas 77843, United States.
The limited water solubility and environmental instability of natural pesticidal compounds impede their broader agricultural use. This study reports an amphiphile-assisted nanoprecipitation method to imbibe azadirachtin-rich neem seed extract (NSE) within a glycine carrier matrix, yielding a stable nanocomposite biopesticide. The formulation, prepared using polyoxyethylene sorbitan monooleate as a stabilizer and glycine as the matrix former, followed by lyophilization, exhibited a hydrodynamic diameter of ∼8 nm when redispersed in water.
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDF