Integrating spatial omics and single-cell mass spectrometry imaging reveals tumor-host metabolic interplay in hepatocellular carcinoma.

Proc Natl Acad Sci U S A

Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic crosstalk among diverse cellular populations contributes to shaping a competitive and symbiotic tumor microenvironment (TME) to influence cancer progression and immune responses, highlighting vulnerabilities that can be exploited for cancer therapy. Using a spatial multiomics platform to study the cell-specific metabolic spectrum in hepatocellular carcinoma (HCC), we map the metabolic interactions between different cells in the HCC TME and identify a unique tumor-immune-cancer-associated fibroblast (CAF) "interface" zone, where cell-cell interactions are enhanced and accompanied by significant upregulation of lactic acid and long-chain polyunsaturated fatty acids. Further combining single-cell mass spectrometry imaging of patient-derived tumor organoids, cocultured CAFs, and macrophages, we demonstrate that CAFs increase glycolysis and secrete lactic acid to the surrounding microenvironment to drive immunosuppressive macrophage M2 polarization. These findings facilitate the understanding of cancer-associated metabolic interactions in complex TME and provide clues for targeted clinical therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337300PMC
http://dx.doi.org/10.1073/pnas.2505789122DOI Listing

Publication Analysis

Top Keywords

single-cell mass
8
mass spectrometry
8
spectrometry imaging
8
hepatocellular carcinoma
8
metabolic interactions
8
lactic acid
8
metabolic
5
integrating spatial
4
spatial omics
4
omics single-cell
4

Similar Publications

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Single-Cell Membrane Molecular Cartography Enabled by Nanoengineered VUV-LDI Mass Spectrometry Imaging.

Anal Chem

September 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Deciphering the multicomponent of cell membranes at the single-cell level is critical for understanding pathological mechanisms such as tumor metastasis, yet remains technically daunting due to the membrane's nanoscale thickness and ultralow molecular abundance. Here, we introduce a surface-assisted vacuum ultraviolet laser desorption-ionization mass spectrometry imaging (SAVUVDI-MSI) platform that overcomes long-standing challenges of cytoplasmic interference and insufficient sensitivity. Leveraging the nanoscale depth profiling capability of VUV-LDI, we achieve precise ablation of a single-cell membrane.

View Article and Find Full Text PDF

We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density).

View Article and Find Full Text PDF

Single-cell analysis provides critical insights into cellular heterogeneity, dynamic behaviours and microenvironmental interactions, driving advancements in precision medicine and disease mechanism research. However, traditional technologies face limitations due to low throughput, insufficient sensitivity and bottlenecks in multi-omics integration. Microdroplet printing technology, with its advantages in high-throughput single-cell encapsulation, picolitre-level reaction precision and oil-free phase contamination avoidance, has propelled single-cell analysis into a new era of high-throughput and high-dimensional resolution through deep integration with multimodal detection platforms.

View Article and Find Full Text PDF

HT SpaceM: A high-throughput and reproducible method for small-molecule single-cell metabolomics.

Cell

September 2025

Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Baden-Württe

Single-cell metabolomics (SCM) promises to reveal metabolism in its complexity and heterogeneity, yet current methods struggle with detecting small-molecule metabolites, throughput, and reproducibility. Addressing these gaps, we developed HT SpaceM, a high-throughput SCM method combining cell preparation on custom glass slides, small-molecule matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MS), and batch processing. We propose a unified framework covering quality control, characterization, structural validation, and differential and functional analyses.

View Article and Find Full Text PDF