Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Colorectal cancer (CRC) is intricately influenced by dysregulated microRNAs (miRNAs) targeting the Wnt signaling pathway, a phenomenon pivotal in CRC initiation and progression. The exploration of miRNA-Wnt interactions holds promise for innovative therapeutic strategies in CRC treatment.

Methods: a comprehensive list of genes influenced by dysregulated miRNAs targeting the Wnt pathway was compiled. High-scoring genes from the miRDB database underwent further analysis. Protein-protein interaction networks were constructed using Cytoscape and StringApp 2.0, with hub proteins identified through MCC, MNC, DMNC, and Degree algorithms. Gene ontology, KEGG enrichment analysis, CytoCluster, and promoter motif analysis were employed to characterize gene functions, associations, dysregulated clusters, and regulatory elements.

Results: Protein-protein interaction networks unveiled 15 central hub proteins, including EP300, , NRAS, NF1, CCND1, SMAD4, SOCS7, SOCS6, NECAP1, MBTD1, ACVR1C, ESR1, CREBBP, and PIK3CA. Gene ontology and KEGG analysis revealed their involvement in critical biological processes, cellular components, and molecular functions. CytoCluster analysis identified dysregulated miRNA-targeted gene clusters linked to cancer-related pathways. Promoter motif analysis provided insights into regulatory elements governing hub protein expression.

Conclusion: The identified hub proteins, enriched in cancer-related pathways, offer potential therapeutic targets. These findings pave the way for future research, enhancing our ability to develop targeted interventions for improved outcomes in CRC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.31557/APJCP.2025.26.7.2511DOI Listing

Publication Analysis

Top Keywords

hub proteins
12
wnt pathway
8
colorectal cancer
8
influenced dysregulated
8
mirnas targeting
8
targeting wnt
8
protein-protein interaction
8
interaction networks
8
gene ontology
8
ontology kegg
8

Similar Publications

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

To evaluate the efficacy and explore the potential mechanism of curcumin for the treatment and prevention of NSCLC. We searched six databases thoroughly for articles published before December 2024. Stata 15.

View Article and Find Full Text PDF

PTTG1 as a common promising target for PCOS, Ovarian Cancer, and Major Depressive Disorder patients.

Comput Biol Chem

September 2025

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India. Electronic address:

Women are susceptible to hormonal imbalances and endocrine-related disorders such as Polycystic Ovary Syndrome (PCOS), Ovarian Cancer (OC), and Major Depressive Disorder (MDD). This study aims to identify gene-level interconnections among these conditions using omics-based bioinformatic approaches. Publicly available GEO datasets, viz.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF