Sentinel-Site-Based Surveillance of Drug Resistance and Epidemiology in Sichuan, China.

Antibiotics (Basel)

Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research I

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To investigate epidemiological/drug-resistance characteristics and identify potential factors related to drug-resistant and clustered tuberculosis in Sichuan.

Methods: A total of 295 (MTB) isolates were collected from surveillance sites in Sichuan from 2019 to 2021. The minimum inhibitory concentrations (MICs) of 12 anti-TB drugs were acquired using the broth microdilution method, followed by whole-genome sequencing (WGS) analysis.

Results: Of 268 MTB isolates with both WGS and drug-susceptibility testing (DST) results, 159 (59.3%, 159/268) strains belonged to the Beijing lineage (L2). Isoniazid had the highest resistance rate (15.3%, 41/268), followed by rifampicin (9.3%, 25/268). The sensitivity of WGS to predict drug resistance varied from 75% to 97.6%, and the specificity was above 96.0% for all. Ser450Leu (41.7%, 10/24) and Ser315Thr (70%, 28/40) were the most frequent mutations in rifampicin and isoniazid resistance isolates, respectively. The clustering rate in Sichuan was 9.3% (25/268), and patients ≤ 24 years old (aOR = 11.697; 95% CI: 0.817-167.463) had a greater risk of clustering.

Conclusions: Our findings prove that WGS is a promising tool for predicting drug resistance to isoniazid, rifampicin, ethambutol, moxifloxacin and levofloxacin in Sichuan. The higher resistance rate to isoniazid emphasizes the urgent need for susceptibility testing surveillance and application management. Improving the diagnosis, treatment and management of patients ≤ 24 years old may reduce the transmission of MTB in Sichuan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291903PMC
http://dx.doi.org/10.3390/antibiotics14070625DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
mtb isolates
8
resistance rate
8
93% 25/268
8
patients ≤
8
≤ years
8
resistance
6
sichuan
5
sentinel-site-based surveillance
4
surveillance drug
4

Similar Publications

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the most important concerns in the world, occurring for both Gram-positive and Gram-negative bacteria. () is a Gram-negative bacterium belonging to the family of Enterobacteriaceae and also plays an important role in development of nosocomial infections. Three forms have emerged as a result of AMR including multi-drug resistant (MDR), extensively drug-resistant, and pan-drug-resistant.

View Article and Find Full Text PDF

Leishmaniasis, a disease caused by Leishmania parasites, poses a significant health threat globally, particularly in Latin America and Brazil. Leishmania amazonensis is an important species because it is associated with both cutaneous leishmaniasis and an atypical visceral form. Current treatments are hindered by toxicity, resistance, and high cost, driving the need for new therapeutic targets and drugs.

View Article and Find Full Text PDF