Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(Vizioli, 1870), a tissue-dwelling mite responsible for nodular acariasis in birds, was identified from two hens reared in a rural backyard flock in Umbria, Italy. Adult mites were found in the subcutaneous tissue and on the serosal surface of various internal organs. Larval and first- and second-stage nymphal forms were observed beneath the skin and near the trachea and esophageal serosa. By comparing the existing literature with that reported in the present study, we propose a hypothetical reconstruction of the parasite's life cycle. It is postulated that the entry of occurs through the cervical skin, where adults mate and larviparous females give birth to larvae. These larvae migrate into the loose connective tissues surrounding the trachea and esophagus, where they develop into nymphs. The immature forms then progress along the esophagus and trachea to reach the thoracic and abdominal cavities, colonizing the serosal surfaces of visceral organs. It remains unclear whether, or how, the mites return to the subcutaneous tissues to complete their maturation. Senescent specimens degenerate within the subcutis, where they are encased by a granulomatous inflammatory reaction that leads to the formation of characteristic calcified nodules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291993PMC
http://dx.doi.org/10.3390/ani15142024DOI Listing

Publication Analysis

Top Keywords

life cycle
8
vizioli 1870
8
considerations life
4
cycle vizioli
4
1870 based
4
based natural
4
natural infestation
4
infestation laying
4
laying hens
4
hens vizioli
4

Similar Publications

Stress-induced organismal death is genetically regulated by the mTOR-Zeste-Phae1 axis.

Proc Natl Acad Sci U S A

September 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.

All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .

View Article and Find Full Text PDF

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important herbivorous pest of bottle gourd. We studied the development, reproduction and life table parameters of H. armigera to assess the resistance of eight bottle gourd cultivars, and performed biochemical analysis when H.

View Article and Find Full Text PDF

Anal fissure causes pain and bleeding during or after bowel movements, significantly impacting individuals' quality of life. Current treatments aim to interrupt this cycle but have associated risks and limitations. The emergence of arginine, crucial for protein creation and nitric oxide (NO) production, presents an intriguing therapeutic avenue by the impact on reducing anal sphincter pressure and enhancing anoderm blood flow, due to its roles in vasodilation, anti-inflammatory responses, and collagen synthesis, which can promote wound healing and highlighting its potential as an alternative therapy.

View Article and Find Full Text PDF

Hydrothermal-based Wastewater Solids Management for Targeted Resource Recovery and Decarbonization in the Contiguous U.S.

Environ Sci Technol

September 2025

The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.

View Article and Find Full Text PDF

Dental waste, including metal, plastic, and chemical residues, and high energy and water consumption, significantly contribute to environmental degradation. This review highlights the environmental impact of common dental materials and practices, such as amalgam, resin composites, and disposable plastics. The aim is to examine current evidence, emphasizing mercury pollution, microplastic release, and biomedical waste handling.

View Article and Find Full Text PDF