98%
921
2 minutes
20
Background/objectives: The tumor microenvironment (TME) plays a critical role in cancer progression by shaping immune responses and influencing patient outcomes. We hypothesized that the relative proximity of specific immune cell pairs to cancer cells within the TME could help predict their pro- or anti-tumor functions and reflect clinically relevant immune dynamics.
Methods: We analyzed imaging mass cytometry (IMC) data from lung adenocarcinoma (LUAD) and triple-negative breast cancer (TNBC) cohorts. For each immune cell pair, we calculated a relative distance (RD) score, which quantifies the spatial difference in proximity to cancer cells. We assessed the prognostic and predictive significance of these RD-scores by comparing them with conventional features such as cell fractions, densities, and individual cell distances. To account for variations in cell abundance, we also derived normalized RD-scores (NRD-scores).
Results: RD-scores were more strongly associated with overall patient survival than standard immunological metrics. Among all immune cell pairs, the RD-score comparing the proximity of B cells to that of intermediate monocytes showed the most significant association with improved survival. In TNBC, RD-scores also improved the distinction between responders and non-responders to immunochemotherapy and chemotherapy. Normalized RD-scores reinforced these findings by minimizing the influence of cell density and further highlighting the importance of immune cell spatial relationships.
Conclusions: RD-scores offer a spatially informed biomarker that outperforms traditional metrics in predicting survival and treatment response. This approach provides a new perspective on immune cell behavior in the TME and has potential utility in guiding personalized cancer therapies and patient stratification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293128 | PMC |
http://dx.doi.org/10.3390/cancers17142335 | DOI Listing |
Crit Rev Immunol
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.
Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
January 2025
Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.
View Article and Find Full Text PDF