Accurate, Scalable Structural Variant Genotyping in Complex Genomes at Population Scales.

Mol Biol Evol

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangdong 510642, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Comparisons of complete genome assemblies offer a direct procedure for characterizing all genetic differences among them. However, existing tools are often limited to specific aligners or optimized for specific organisms, narrowing their applicability, particularly for large and repetitive plant genomes. Here, we introduce Structural Variants Genotyping of Assemblies on Population scales (SVGAP), a pipeline for structural variant (SV) discovery, genotyping, and annotation from high-quality genome assemblies at the population level. Through extensive benchmarks using simulated SV datasets at individual, population, and phylogenetic contexts, we demonstrate that SVGAP performs favorably relative to existing tools in SV discovery. Additionally, SVGAP is one of the few tools to address the challenge of genotyping SVs within large assembled genome samples, and it generates fully genotyped VCF files. Applying SVGAP to 26 maize genomes revealed hidden genomic diversity in centromeres, driven by abundant insertions of centromere-specific LTR-retrotransposons. The output of SVGAP is well-suited for pangenome construction and facilitates the interpretation of previously unexplored genomic regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362251PMC
http://dx.doi.org/10.1093/molbev/msaf180DOI Listing

Publication Analysis

Top Keywords

structural variant
8
population scales
8
genome assemblies
8
existing tools
8
assemblies population
8
svgap
5
accurate scalable
4
scalable structural
4
genotyping
4
variant genotyping
4

Similar Publications

Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.

View Article and Find Full Text PDF

Current antithrombotic therapies face dual constraints of bleeding complications and monitoring requirements. Although natural hirudin provides targeted thrombin inhibition, its clinical adoption is hindered by sourcing limitations. This study developed a recombinant hirudin variant HMg (rHMg) with enhanced anticoagulant activity through genetic engineering and established cost-effective large-scale production methods.

View Article and Find Full Text PDF

Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.

View Article and Find Full Text PDF

Evaluation of two IgG-scFv bispecific antibodies for neutralizing Omicron variants of SARS-CoV-2.

J Virol Methods

September 2025

Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico. Electronic address:

Bispecific antibodies (bsAbs) offer an alternative to monoclonal antibody (mAb) cocktails for addressing the loss of efficacy due to the rapid emergence of SARS-CoV-2 mutants. The structure and specificity of the parental antibodies influence the development of a highly neutralizing bsAb. To design an effective bsAb, the recognition of 44 single-chain fragment variable (scFv) antibodies against variants of SARS-CoV-2 was evaluated, along with an assessment of their ability to competitively bind to the receptor-binding domain (RBD) compared to the most potent neutralizing mAbs.

View Article and Find Full Text PDF

Novel alternative transcripts of TLR8 and TLR9 reveal evolutionary pressure to conserve protein structure.

Biochimie

September 2025

Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.

TLR8 and TLR9 are innate immune receptors belonging to the TLR family that are essential for viral recognition and early immune activation. Their dysfunction is linked to increased susceptibility to infections. TLR8 detects viral single- and double-stranded RNA, while TLR9 recognizes viral DNA molecules with CpG motifs.

View Article and Find Full Text PDF