98%
921
2 minutes
20
Accurate prediction of thermodynamic parameters in biochemical reactions is essential for understanding and designing metabolic systems. Most existing methods for predicting the Gibbs free energy of biochemical reactions often neglect the environmental influences on Gibbs free energy such as pH, temperature and ionic strength, and lack efficient feature selection mechanisms, resulting in suboptimal predictive accuracy. In this paper, a Convolutional Neural Network Based Model with Multiple Environmental Parameters and Molecular Fingerprint Contribution (MEFC-CNN) is proposed to address these problems. Firstly, an encoding method that incorporates environmental factors is proposed to improve the ability to represent features. Secondly, a convolutional neural network with multiple parallel feature inputs is designed to efficiently select the key features, thereby improving the accuracy of Gibbs free energy prediction of biochemical reactions. Experimental results demonstrate that the MEFC-CNN model achieves superior predictive accuracy compared to existing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2025.108583 | DOI Listing |
J Am Chem Soc
September 2025
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Guangdong-Hongkong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices and Department of Chemistry, S
Postsynthetic modification (PSM) is a powerful strategy for tailoring the structure and functionality of covalent organic frameworks (COFs). In this work, we present a novel enzymatic PSM strategy for functional group engineering within COFs. By taking advantage of enzymatic catalysis, 2-hydroxyethylthio (-S-EtOH) and ethylthio (-S-Et) groups were covalently implanted within the COF pore channels with high grafting efficiency under ambient aqueous conditions, highlighting the mild, efficient, and ecofriendly nature of this approach.
View Article and Find Full Text PDFRSC Adv
September 2025
Otto-von-Guericke-University Magdeburg, Chemical Institute, Chair for Industrial Chemistry Universitätsplatz 2 39106 Magdeburg Germany
This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, Sofia 1756, Bulgaria.
Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China. Electronic address:
Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.
View Article and Find Full Text PDF