Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasingly prominent microplastics (MPs) pollution may affect the dynamics of arsenic (As) in estuarine sediments, but the effect of MPs on the bioavailable arsenic (bio-As) and its regulatory mechanism are still unclear. In this study Min River estuary, a typical subtropical estuary, was selected, and DGT technology was used to explore the pattern of change, composition characteristics and regulatory mechanism of bio-As in sediment under the influence of MPs (type: polylactic acid (PLA) and polyethylene terephthalate (PET); dose: 1 % and 5 %) through incubation experiments. The results showed that (1) the low-dose PET significantly increased the concentration of bio-As, (2) during the incubation experiment, the effect of MPs on the composition of the bio-As was phased. In general, PLA and 5 % PET inhibited the oxidation of As(III), respectively, while 1 % PET did the opposite, (3) the low-dose PET significantly increased the diversity of microbial community, (4) Bacteroidetes, Firmicutes, Proteobacteria, Desulfobacterota, and Chloroflexi were the most dominant microbial groups. (5) PET decreased the abundances of Bacteroides, Desulphurobacteria and Chlorocurvula, but increased the abundances of Proteobacteria. PLA decreased the abundance of Firmicutes and Chlorocurvula, and increased the abundance of desulphurobacteria and Proteobacteria, and (6) Marinobacter and Pseudomonas would directly promote the redox reaction of As. The bacteria Bacillus, Alkaliphilus, Haloplasma, Caminicella, Clostridiisalibacter, Desulfopila, and Desulfuromonas were able to influence the change of As by changing environmental factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.180095DOI Listing

Publication Analysis

Top Keywords

regulatory mechanism
12
subtropical estuary
8
low-dose pet
8
pet increased
8
chlorocurvula increased
8
pet
6
mechanism microplastics
4
microplastics arsenic
4
arsenic bioavailability
4
bioavailability subtropical
4

Similar Publications

A new frontier in oncology: Understanding the landscape of cancer vaccines.

J Oncol Pharm Pract

September 2025

Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.

Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.

View Article and Find Full Text PDF

Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.

View Article and Find Full Text PDF

Galectins in Inflammatory Skin Diseases: Mechanisms and Therapeutic Potential.

J Invest Dermatol

September 2025

Department of Dermatology, Keck School of Medicine of University of South California, Los Angeles, California, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. Electronic address:

This review examines the roles of galectins, a family of animal lectins, in inflammatory skin diseases, focusing on their involvement in the pathogenesis of psoriasis, atopic dermatitis, contact dermatitis, and common autoimmune diseases. We highlight the differential expression of galectins in lesional skin and their correlation with inflammatory mediators. In addition, we summarize the functions and mechanisms of action of endogenous galectins, as revealed through studies of genetically engineered cell lines and experimental animals.

View Article and Find Full Text PDF

Reprogramming resistance: phage-antibiotic synergy targets efflux systems in ESKAPEE pathogens.

mBio

September 2025

Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.

View Article and Find Full Text PDF

Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.

View Article and Find Full Text PDF